Member since
05-11-2016
5
Posts
0
Kudos Received
0
Solutions
05-12-2016
08:37 AM
Ok Thanks! Seems adding this param works for me. #!/usr/bin/env bash
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
MASTER="yarn-cluster"
# Options read in YARN client mode
SPARK_EXECUTOR_INSTANCES="3" #Number of workers to start (Default: 2)
#SPARK_EXECUTOR_CORES="1" #Number of cores for the workers (Default: 1).
#SPARK_EXECUTOR_MEMORY="1G" #Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
#SPARK_DRIVER_MEMORY="512 Mb" #Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)
#SPARK_YARN_APP_NAME="spark" #The name of your application (Default: Spark)
#SPARK_YARN_QUEUE="~@~Xdefault~@~Y" #The hadoop queue to use for allocation requests (Default: @~Xdefault~@~Y)
#SPARK_YARN_DIST_FILES="" #Comma separated list of files to be distributed with the job.
#SPARK_YARN_DIST_ARCHIVES="" #Comma separated list of archives to be distributed with the job.
# Generic options for the daemons used in the standalone deploy mode
# Alternate conf dir. (Default: ${SPARK_HOME}/conf)
export SPARK_CONF_DIR=${SPARK_CONF_DIR:-{{spark_home}}/conf}
# Where log files are stored.(Default:${SPARK_HOME}/logs)
#export SPARK_LOG_DIR=${SPARK_HOME:-{{spark_home}}}/logs
export SPARK_LOG_DIR={{spark_log_dir}}
# Where the pid file is stored. (Default: /tmp)
export SPARK_PID_DIR={{spark_pid_dir}}
# A string representing this instance of spark.(Default: $USER)
SPARK_IDENT_STRING=$USER
# The scheduling priority for daemons. (Default: 0)
SPARK_NICENESS=0
export HADOOP_HOME=${HADOOP_HOME:-{{hadoop_home}}}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-{{hadoop_conf_dir}}}
# The java implementation to use.
export JAVA_HOME={{java_home}}
if [ -d "/etc/tez/conf/" ]; then
export TEZ_CONF_DIR=/etc/tez/conf
else
export TEZ_CONF_DIR=
fi
ps:it works well but seems the params passed via command line (e.g.: --num-executors 8--num-executor-core 4--executor-memory 2G) are not taken in consideration. Instead, if I set the executors in "spark-env template" filed of Ambari, the params are taken in consideration. Anyway now it works 🙂 Thanks a lot.
... View more