Member since
09-13-2016
31
Posts
5
Kudos Received
2
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
2613 | 06-12-2017 07:05 AM | |
1548 | 02-27-2017 06:42 PM |
06-13-2017
07:59 AM
Hi @Daniel Kozlowski, I resolved the issue it was because the input table I had defined had string datatype, I used a cast function inside my spark code and now everything is working fine. Thanks for your help.
... View more
06-13-2017
05:52 AM
Also see the below the structure of the dataframe before the write method is called DataFrame[vehicle_hdr: string, vehicle_no: string, incident_timestamp: string]
... View more
06-13-2017
05:43 AM
Hi @Daniel Kozlowski, I have tested the above case and it works fine...on my end as well. Also, I created a table with the timestamp column as string and then from this temp table I inserted the data into the main table with timestamp datatype and from spark I am able to read the data without any issues. I guess the issue is when I am inserting data from spark into hive and reading it back.
... View more
06-13-2017
05:23 AM
Thanks @Daniel, the timestamp in my case are real time stamps that are coming from our sensors. As can be seen the timestamp values are 1969-06-1906:57:26.485 and 1988-06-2105:36:22.35 are in my table. I inserted the data from a pyspark program, code snippet below write_df = final_df.where(col(first_partitioned_column).isin(format(first_partition)))
write_df.drop(first_partitioned_column)
write_df.write.mode("overwrite").format("orc").partitionBy(first_partitioned_column).save(path) One thing I observed was the timestamp column in write_df was of string datatype and not timestamp but then my assumption is that spark will do the cast internally where a dataframe column is string and the table column is of timestamp value. Another thing to note is from beeline I am able to query the results without any issues. Thanks in advance.
... View more
06-12-2017
07:10 AM
All, I have a table which has 3 columns and is in ORC format, the data is as below +--------------+-------------+--------------------------+--+
| vehicle_hdr | vehicle_no | incident_timestamp |
+--------------+-------------+--------------------------+--+
| XXXX | 3911 | 1969-06-19 06:57:26.485 |
| XXXX | 3911 | 1988-06-21 05:36:22.35 | The DDL for the table is as below create table test (vehicle_hdr string,vehicle_no string,incident_timestamp timestamp)stored as ORC; From the hive beeline I am able to view the results but when I am using PySpark 2.1 and running the below code o1 = sqlContext.sql("select vehicle_hdr, incident_timestamp from test") I am getting the below error Caused by: java.lang.ClassCastException: org.apache.hadoop.io.Text cannot be cast to org.apache.hadoop.hive.serde2.io.TimestampWritable
at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableTimestampObjectInspector.getPrimitiveJavaObject(WritableTimestampObjectInspector.java:39)
at org.apache.spark.sql.hive.HadoopTableReader$anonfun$14$anonfun$apply$11.apply(TableReader.scala:393)
at org.apache.spark.sql.hive.HadoopTableReader$anonfun$14$anonfun$apply$11.apply(TableReader.scala:392)
at org.apache.spark.sql.hive.HadoopTableReader$anonfun$fillObject$2.apply(TableReader.scala:416)
at org.apache.spark.sql.hive.HadoopTableReader$anonfun$fillObject$2.apply(TableReader.scala:408)
at scala.collection.Iterator$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$anon$11.next(Iterator.scala:328)
... View more
Labels:
- Labels:
-
Apache Hive
06-12-2017
07:05 AM
I resolved it by removing the column on which the table was partitioned from the dataframe
... View more
06-01-2017
04:35 PM
I am using pyspark 2.1 to create partitions dynamically from table A to table B. Below are the DDL's <code>create table A (
objid bigint,
occur_date timestamp)
STORED AS ORC;
create table B (
objid bigint,
occur_date timestamp)
PARTITIONED BY (
occur_date_pt date)
STORED AS ORC;
I am then using a pyspark code where I am trying to determine the partitions that need to be merged, below is the portion of code where I am actually doing that <code>for row in incremental_df.select(partitioned_column).distinct().collect():
path = '/apps/hive/warehouse/B/' + partitioned_column + '=' + format(row[0])
old_df = merge_df.where(col(partitioned_column).isin(format(row[0])))
new_df = incremental_df.where(col(partitioned_column).isin(format(row[0])))
output_df = old_df.subtract(new_df)
output_df = output_df.unionAll(new_df)
output_df.write.option("compression","none").mode("overwrite").format("orc").save(path)
refresh_metadata_sql = 'MSCK REPAIR TABLE ' + table_name
sqlContext.sql(refresh_metadata_sql)
On Execution of the code I am able to see the partitions in HDFS Found 3 items drwx------ - 307010265 hdfs 0 2017-06-01 10:31 /apps/hive/warehouse/B/occur_date_pt=2017-06-01 drwx------ - 307010265 hdfs 0 2017-06-01 10:31 /apps/hive/warehouse/B/occur_date_pt=2017-06-02 drwx------ - 307010265 hdfs 0 2017-06-01 10:31 /apps/hive/warehouse/B/occur_date_pt=2017-06-03 But when I am trying to access the table inside Spark I am getting array out of bound error <code>>> merge_df = sqlContext.sql('select * from B')
DataFrame[]
>>> merge_df.show()
17/06/01 10:33:13 ERROR Executor: Exception in task 0.0 in stage 200.0 (TID 4827)
java.lang.IndexOutOfBoundsException: toIndex = 3
at java.util.ArrayList.subListRangeCheck(ArrayList.java:1004)
at java.util.ArrayList.subList(ArrayList.java:996)
at org.apache.hadoop.hive.ql.io.orc.RecordReaderFactory.getSchemaOnRead(RecordReaderFactory.java:161)
at org.apache.hadoop.hive.ql.io.orc.RecordReaderFactory.createTreeReader(RecordReaderFactory.java:66)
at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.<init>(RecordReaderImpl.java:202)
at org.apache.hadoop.hive.ql.io.orc.ReaderImpl.rowsOptions(ReaderImpl.java:539)
at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$ReaderPair.<init>(OrcRawRecordMerger.java:183)
at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger$OriginalReaderPair.<init>(OrcRawRecordMerger.java:226)
at org.apache.hadoop.hive.ql.io.orc.OrcRawRecordMerger.<init>(OrcRawRecordMerger.java:437)
at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getReader(OrcInputFormat.java:1215)
at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat.getRecordReader(OrcInputFormat.java:1113)
at org.apache.spark.rdd.HadoopRDD$anon$1.liftedTree1$1(HadoopRDD.scala:252)
at org.apache.spark.rdd.HadoopRDD$anon$1.<init>(HadoopRDD.scala:251)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:211)
at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
... View more
Labels:
- Labels:
-
Apache Hive
-
Apache Spark
03-01-2017
08:07 AM
Hi All, I have installed LLAP in my HDP 2.5 cluster. I believe the Hive View in Ambari by default uses hive on tez, how can I make it use HIVE LLAP ? Thanks, Jayadeep
... View more
Labels:
- Labels:
-
Apache Hive
02-27-2017
06:42 PM
I resolved it, by adding few extra lines in the rewrite rule to handle websocket interaction RewriteRule ^/ws(.*)$ ws://localhost:9995/ws [P]
... View more