Member since
03-07-2019
158
Posts
53
Kudos Received
33
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
6349 | 03-08-2019 08:46 AM | |
4337 | 10-17-2018 10:25 AM | |
2771 | 10-16-2018 07:46 AM | |
2118 | 10-16-2018 06:57 AM | |
1760 | 10-12-2018 09:55 AM |
06-26-2019
07:43 AM
What will happen to existing HCC posts and articles? Will these exist on the new platform?
... View more
04-08-2019
12:53 PM
@Rabah Houaoui Sounds like maybe an issue from the api_version used. Are you trying this out on HDP 3.1 or a different HDP or HDF version? Could you share the full error stack?
... View more
03-25-2019
12:54 PM
4 Kudos
Short Description: This article covers how to run a simple producer and consumer in kafka-python (1.4.5) on Kafka 2.0.0, within a kerberized HDP 3.1.0 cluster. Article Running a producer in a kerberized HDP 3.1 Kafka 2.0.0 environment using kafka-python Covering pre-requisites Validating the kerberos setup of kafka on HDP 3.1 Running a producer and consumer in kafka-python 1.4.5 on a kerberized kafka cluster Pre-Requisites You are running a kerberized HDP 3.1.0 cluster with Kafka 2.0.0 installed You are running one of the following python versions: 2.7 , 3.4 , 3.5 , 3.6 , 3.7 Note that in the example from this article, I am using SASL_PLAINTEXT. You will need to modify some parameters if you are using SASL_SSL, as well as add some ssl producer/consumer parameters will need to be specified in your kafka-python code in addition. Please also take note of the current kafka-python compatibility notes: https://kafka-python.readthedocs.io/en/master/compatibility.html Steps We will first need to install the gssapi libraries for python in order to be able to use kafka-python with kerberos. We will also need to install kafka-python if you have not already done so. I will be using the latest kafka-python version currently available, which is version 1.4.5 at the time of writing this article. pip install gssapi
pip install kafka-python Make sure that Kerberos is correctly enabled for kafka on your cluster. We will want to verify that the kafka broker properties are set to listen on SASL_PLAINTEXT through ambari -> kafka -> configs: Also verify that GSSAPI is listed in the sasl.enabled.mechanisms property: Next, we obtain a Kerberos token before running our kafka-python producer. [kafka@c2175-node4 ~]$ kinit -kt /etc/security/keytabs/kafka.service.keytab kafka/c2175-node4.hwx.com@HWX.COM
[kafka@c2175-node4 ~]$ klist Ticket cache: FILE:/tmp/krb5cc_1006 Default principal: kafka/c2175-node4.hwx.com@HWX.COM
Valid starting Expires Service principal
03/25/2019 11:59:26 03/26/2019 11:59:26 krbtgt/HWX.COM@HWX.COM We will be running the following code from python: from kafka import KafkaProducer
import logging
logging.basicConfig(level=logging.DEBUG)
producer = KafkaProducer(bootstrap_servers='c2175-node4.hwx.com:6667', api_version='0.10', security_protocol='SASL_PLAINTEXT', sasl_mechanism='GSSAPI', sasl_kerberos_service_name='kafka', connections_max_idle_ms=1200000, request_timeout_ms=1000000, api_version_auto_timeout_ms=1000000)
for item in range(10):
producer.send('new_topic', b'Happy '+ str(item)+' Days!') Let me explain some of the parameters in the above python block. Also note that in the code example given I’ve enabled debug logging. This is of course not required in order to run the producer but it will help you in case you run into any errors. boostrap_servers List of kafka brokers (FQDN) and port (eg 6667) Api_version Kafka 2.0+ is backwards compatible, within kafka-python 1.4.5 we can’t set the api_version to 2,0,0 as this is not yet available from kafka-python but we can run other versions that are compatible on kafka-python version 1.4.5 with kafka 2.0.0. I used api version 0.10 for the examples given in this article. Security_protocol SASL_PLAINTEXT This would be SASL_SSL in case you’re enabling wire encryption on kafka at some stage. Sasl_mechanism GSSAPI For this to work, you need to install the GSSAPI libraries for python manually first. Plaintext for sasl_mechanism (not to be confused with SASL_plaintext!) WILL NOT WORK. Sasl_kerberos_service_name This defaults to ‘kafka’. If your kafka service is running under a different user, you would have to change this parameter accordingly. Here is what running the kafka-python on a kerberized HDP 3.1 cluster looks like; [kafka@c2175-node4 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_1006
Default principal: kafka/c2175-node4.hwx.com@HWX.COM
Valid starting Expires Service principal
03/25/2019 12:24:18 03/26/2019 12:24:18 krbtgt/HWX.COM@HWX.COM
[kafka@c2175-node4 ~]$ python
Python 2.7.5 (default, Apr 11 2018, 07:36:10)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from kafka import KafkaProducer
>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)
>>> producer = KafkaProducer(bootstrap_servers='c2175-node4.hwx.com:6667', api_version='0.10', security_protocol='SASL_PLAINTEXT', sasl_mechanism='GSSAPI', sasl_kerberos_service_name='kafka', connections_max_idle_ms=1200000, request_timeout_ms=1000000)
DEBUG:kafka.producer.kafka:Starting the Kafka producer
WARNING:kafka.producer.kafka:use api_version=(0, 10) [tuple] -- "0.10" as str is deprecated
DEBUG:kafka.metrics.metrics:Added sensor with name connections-closed
DEBUG:kafka.metrics.metrics:Added sensor with name connections-created
DEBUG:kafka.metrics.metrics:Added sensor with name select-time
DEBUG:kafka.metrics.metrics:Added sensor with name io-time
DEBUG:kafka.metrics.metrics:Added sensor with name bufferpool-wait-time
DEBUG:kafka.metrics.metrics:Added sensor with name batch-size
DEBUG:kafka.metrics.metrics:Added sensor with name compression-rate
DEBUG:kafka.metrics.metrics:Added sensor with name queue-time
DEBUG:kafka.metrics.metrics:Added sensor with name produce-throttle-time
DEBUG:kafka.metrics.metrics:Added sensor with name records-per-request
DEBUG:kafka.metrics.metrics:Added sensor with name bytes
DEBUG:kafka.metrics.metrics:Added sensor with name record-retries
DEBUG:kafka.metrics.metrics:Added sensor with name errors
DEBUG:kafka.metrics.metrics:Added sensor with name record-size-max
DEBUG:kafka.producer.kafka:Kafka producer started
DEBUG:kafka.producer.sender:Starting Kafka producer I/O thread.
>>> DEBUG:kafka.client:Initializing connection to node bootstrap for metadata request
DEBUG:kafka.client:Initiating connection to node bootstrap at 172.25.38.138:6667
DEBUG:kafka.metrics.metrics:Added sensor with name bytes-sent-received
DEBUG:kafka.metrics.metrics:Added sensor with name bytes-sent
DEBUG:kafka.metrics.metrics:Added sensor with name bytes-received
DEBUG:kafka.metrics.metrics:Added sensor with name request-latency
DEBUG:kafka.metrics.metrics:Added sensor with name node-bootstrap.bytes-sent
DEBUG:kafka.metrics.metrics:Added sensor with name node-bootstrap.bytes-received
DEBUG:kafka.metrics.metrics:Added sensor with name node-bootstrap.latency
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <disconnected> [IPv4 None]>: creating new socket
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <disconnected> [IPv4 ('172.25.38.138', 6667)]>: setting socket option (6, 1, 1)
INFO:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <connecting> [IPv4 ('172.25.38.138', 6667)]>: connecting to 172.25.38.138:6667 [('172.25.38.138', 6667) IPv4]
DEBUG:kafka.client:Give up sending metadata request since no node is available
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <connecting> [IPv4 ('172.25.38.138', 6667)]>: established TCP connection
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <connecting> [IPv4 ('172.25.38.138', 6667)]>: initiating SASL authentication
DEBUG:kafka.protocol.parser:Sending request SaslHandShakeRequest_v0(mechanism='GSSAPI')
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <authenticating> [IPv4 ('172.25.38.138', 6667)]> Request 1: SaslHandShakeRequest_v0(mechanism='GSSAPI')
DEBUG:kafka.client:Give up sending metadata request since no node is available
DEBUG:kafka.protocol.parser:Received correlation id: 1
DEBUG:kafka.protocol.parser:Processing response SaslHandShakeResponse_v0
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <authenticating> [IPv4 ('172.25.38.138', 6667)]> Response 1 (1.20496749878 ms): SaslHandShakeResponse_v0(error_code=0, enabled_mechanisms=[u'GSSAPI'])
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <authenticating> [IPv4 ('172.25.38.138', 6667)]>: GSSAPI name: kafka/c2175-node4.hwx.com@HWX.COM
INFO:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <authenticating> [IPv4 ('172.25.38.138', 6667)]>: Authenticated as kafka/c2175-node4.hwx.com@HWX.COM via GSSAPI
INFO:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <authenticating> [IPv4 ('172.25.38.138', 6667)]>: Connection complete.
DEBUG:kafka.client:Node bootstrap connected
DEBUG:kafka.client:Give up sending metadata request since no node is available
DEBUG:kafka.client:Sending metadata request MetadataRequest_v1(topics=NULL) to node bootstrap
DEBUG:kafka.protocol.parser:Sending request MetadataRequest_v1(topics=NULL)
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <connected> [IPv4 ('172.25.38.138', 6667)]> Request 2: MetadataRequest_v1(topics=NULL)
DEBUG:kafka.protocol.parser:Received correlation id: 2
DEBUG:kafka.protocol.parser:Processing response MetadataResponse_v1
DEBUG:kafka.conn:<BrokerConnection node_id=bootstrap host=172.25.38.138:6667 <connected> [IPv4 ('172.25.38.138', 6667)]> Response 2 (4.12797927856 ms): MetadataResponse_v1(brokers=[(node_id=1001, host=u'c2175-node4.hwx.com', port=6667, rack=None)], controller_id=1001, topics=[(error_code=0, topic=u'test3', is_internal=False, partitions=[(error_code=0, partition=0, leader=1001, replicas=[1001], isr=[1001])]), (error_code=0, topic=u'__consumer_offsets', is_internal=True, partitions=[(error_code=0, partition=23, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=41, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=32, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=8, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=17, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=44, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=35, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=26, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=11, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=29, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=38, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=47, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=20, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=2, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=5, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=14, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=46, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=49, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=40, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=4, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=13, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=22, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=31, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=16, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=7, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=43, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=25, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=34, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=10, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=37, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=1, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=19, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=28, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=45, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=36, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=27, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=9, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=18, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=21, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=48, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=12, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=3, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=30, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=39, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=15, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=42, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=24, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=33, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=6, leader=1001, replicas=[1001], isr=[1001]), (error_code=0, partition=0, leader=1001, replicas=[1001], isr=[1001])]), (error_code=0, topic=u'ambari_kafka_service_check', is_internal=False, partitions=[(error_code=0, partition=0, leader=1001, replicas=[1001], isr=[1001])]), (error_code=0, topic=u'foobar', is_internal=False, partitions=[(error_code=0, partition=0, leader=1001, replicas=[1001], isr=[1001])]), (error_code=0, topic=u'new_topic', is_internal=False, partitions=[(error_code=0, partition=0, leader=1001, replicas=[1001], isr=[1001])])])
DEBUG:kafka.cluster:Updated cluster metadata to ClusterMetadata(brokers: 1, topics: 5, groups: 0)
>>> for item in range(10):
... producer.send('new_topic', b'Happy '+ str(item)+' Days!')
...
DEBUG:kafka.producer.kafka:Sending (key=None value='Happy 0 Days!' headers=[]) to TopicPartition(topic='new_topic', partition=0)
DEBUG:kafka.producer.record_accumulator:Allocating a new 16384 byte message buffer for TopicPartition(topic='new_topic', partition=0)
DEBUG:kafka.producer.kafka:Waking up the sender since TopicPartition(topic='new_topic', partition=0) is either full or getting a new batch
<kafka.producer.future.FutureRecordMetadata object at 0x7f5fc2c99410>
DEBUG:kafka.producer.kafka:Sending (key=None value='Happy 1 Days!' headers=[]) to TopicPartition(topic='new_topic', partition=0) Similarly, here is what a simple consumer in kafka-python 1.4.5 on an HDP 3.1 kerberized cluster looks like; from kafka import KafkaConsumer
import logging
logging.basicConfig(level=logging.DEBUG)
consumer = KafkaConsumer('new_topic', bootstrap_servers='c2175-node4.hwx.com:6667', api_version='0.10', security_protocol='SASL_PLAINTEXT', sasl_mechanism='GSSAPI', sasl_kerberos_service_name='kafka', connections_max_idle_ms=1200000, request_timeout_ms=1000000)
for msg in consumer:
print (msg) =============================================== If you are running Centos 7.x and encountering the following during the install of gssapi: Exception: Could not find main GSSAPI shared library. Please try setting GSSAPI_MAIN_LIB yourself or setting ENABLE_SUPPORT_DETECTION to 'false' This error is thrown because /bin/krb5-config is missing. To satisfy this requirement: yum install -y krb5-devel =============================================== Special thanks to Akshay Mankumbare
... View more
Labels:
03-22-2019
03:44 PM
Excellent article @Pedro Andrade !
... View more
03-08-2019
08:46 AM
1 Kudo
Hi @Michael Bronson You are specifying /folder/*.jar. If you want the .jar files from one level deeper, you would specify /folder/*/*.jar. Or, here is an alternative example. [hdfs@c2175-node4 stuff]$ hdfs dfs -find /tmp -name *.jar
/tmp/somefolder/y.jar
/tmp/x.jar
[hdfs@c2175-node4 stuff]$ for result in `hdfs dfs -find /tmp -name *.jar` ; do hdfs dfs -copyToLocal $result; done
[hdfs@c2175-node4 stuff]$ ls -al
-rw-r--r-- 1 hdfs hadoop 0 Mar 8 08:43 x.jar
-rw-r--r-- 1 hdfs hadoop 0 Mar 8 08:43 y.j
... View more
12-10-2018
01:17 PM
2 Kudos
Hi @harsha vardhan sqoop job -Dmapred.job.queuename=yourqueuename \
--create yourjob \
--etc make sure you specify Dmapred.job.queuename directly after 'sqoop job', as this parameter must precede all other arguments.
... View more
11-02-2018
12:48 PM
@Nikhil Nice work. HDFS Write bytes by executor should look something like this (be sure to set the left Y unit type to bytes); aliasByNode($application.*.executor.filesystem.*.write_bytes, 1) Executor and Driver memory usage example (similarly as above set the left Y unit to bytes); aliasByNode($application.*.jvm.heap.used, 1) I'll try to find time later to give you some more examples, but they are mostly slight variations on the examples above : - )
... View more
11-01-2018
12:15 PM
@Nikhil Not sure if there is any official documentation on that. I had a quick look and came across this on github, which looks good / straightforward to me.
... View more
11-01-2018
08:23 AM
1 Kudo
Hi @Nikhil If you want to follow the memory usage of individual executors for spark, one way that is possible is via configuration of the spark metrics properties. I've previously posted the following guide that may help you set this up if this would fit your use case; https://community.hortonworks.com/articles/222813/monitoring-spark-2-performance-via-grafana-in-amba-1.html I've just whipped up this example chart showing the individual driver & executor total memory usage for a simple spark application; You can adjust above example according to your need, a total of executors or executors + driver combined, or keep them individual etc...
... View more
10-25-2018
07:32 AM
Hi @Praneender Vuppala
I haven't seen that error before but I bet you can probably get around with it by using find & xargs.
For example can you give this a try?
find /your/dir -name '*.txt' -print0|xargs -0 -P 4 -I % hadoop fs -put % /your/hdfs/destination
Let me know if that helps. If it resolves your problem, please take a moment to log in and click accept answer 🙂
PS. You can tweak with the -P flag to increase/decrease performance using parallelism. More described here.
... View more