
Implementation Steps

Implementation

To augment Cloudera Manager (CM) dashboards via CM API calls to gain full visibility into your
cluster-generated alerts, we’ll guide you through these implementation steps:

1. Deploy a python script
2. Creating Table In Hive
3. Importing Data into Hive Table
4. Connect table to a Visualization tool
5. Building your Dashboard

● Deploying a Python Script

How it works : The script retrieves the data from CM on a CURRENTDAY-1 basis using
the CM API. The python script makes CM API calls, loads the data into json format and
parses it to determine the total number of alerts generated the day before and the alert
count for each service. To define the schema of the Hive table, it first scans through all
of the services within the clusters and inserts them as column names. Every time the
script is executed, it searches through the cluster's services, loads newly added services
as column names, and retrieves alert data.

Python code at the end of the document.

Steps to Perform:

1. Place this script on the same host that is used to deploy Cloudera Manager
Server, or place it on a host that can make calls to the CM API.

2. Schedule a crontab on the same server where the python script is deployed and
set it to run everyday.

1



● Creating Table In Hive

How it works : The table is created the first time the python script is run, which scans
the cluster and service names and inserts it as columns on the go.

Step to Perform: Assuming this will be your first time deploying the script, run the script
manually or let the cron schedule take care of it to create the table.

Note: The table and columns will be created the first time the script is executed. The
column name includes alertdate, totalalerts, and service names based on the services
currently running in your cluster. Totalalerts reflects the total number of alerts generated
for day-1.

● Importing Data into Hive Table

How it works : The python script makes CM API calls to retrieve the data. Let's walk
through the working of the CM API data retrieving process using an example for better
understanding. Here we are trying to fetch the data for January 25th.

CM API String Example:
https://cmserverhost:7183/api/v6/events?query=alert==true;severity==critical;timeReceive
d=ge=2023-01-25T00:00;timeReceived=lt=2023-01-25T23:59&limit=1000

1. The script will first hit the above CM API to retrieve the data for 25th January in
JSON format.

For example:

2

https://westeros.edh.cloudera.com:7183/api/v6/events?query=alert==true;severity==critical;timeReceived=ge=2022-10-19T00:00;timeReceived=lt=2022-10-19T23:59&limit=1000
https://westeros.edh.cloudera.com:7183/api/v6/events?query=alert==true;severity==critical;timeReceived=ge=2022-10-19T00:00;timeReceived=lt=2022-10-19T23:59&limit=1000


2. Fetching totalalerts value from the JSON data - The “totalResults” field in the
upper left corner of the screenshot above shows how many critical alerts were
generated on January 25th. The python script parses through the JSON data to
fetch the value for totalalerts and inserts it in the total alerts column of the
table.

Example screenshot:

3. Fetching service level alert values from JSON data - Each id within the items
section represents one alert, that means each alert has a unique id associated to
it. As we now have the data for the total alerts generated on 25th January i.e 5.
Here we are looking to retrieve the service names that generated those 5 alerts.

3



The JSON data will have 5 unique id’s for 5 alerts.. Let's take the example of the
first “id”: “04171999-4b6e-4bfb-82c9-724272714818” which represents one
alert. The required data related to the service name is in the attributes section.

The Python script searches through the attribute section for the term "SERVICE"
and retrieves its values, which serve as a counter in a FOR loop. For example, if
the SERVICE name "solr2" appears in the subsequent "id:attribute" section, the
count will be increased to (current count+1) and the value will be inserted into
the "solr2" column of the table.

4



4. Process: The same process will be followed for all the other service level alerts:
FOR (Parsing JSON -> Looking for the id, attribute to locate the SERVICE name
and its value -> Increment the count if the SERVICE name is encountered again)
LOOP.

Steps to Perform : The script handles the tasks of parsing and inserting the data into
the Hive. Make sure the python script is scheduled to run every day by a crontab
schedule.

● Connect table to a Visualization tool

How it works : To explore and represent the data, you can make use of any visualization
tool that has connectivity to Hive or Impala through a JDBC/ODBC connection.

To represent the data for this use case, we will be using Tableau as an example to
visualize the data.

Steps to Perform :

1. Follow the article link Cloudera Hadoop Tableau Connection for a step by step
guide on how to connect Tableau to a Cloudera Data Platform Hive Database.

5

https://help.tableau.com/current/pro/desktop/en-us/examples_hadoop.htm#:~:text=Start%20Tableau%20and%20under%20Connect,the%20port%20number%20to%20use


● Building your Visualization Dashboard

How it works : The basic structure of your visualization dashboard should look like
below. As seen from the example, there are 5 different worksheets that are brought
together to build the dashboard, which includes, Average Alert Trend, Total Alert,
Service Level Alert, Weekly Trend of Total and Service Level Alerts.

Before you begin : Make sure that you have connected to your table to the data source
in the visualization tool

6



Steps to Perform :

1. Building the Worksheets
a. Average Alert Trend : This view displays the average number of alerts

produced by your Cluster within CM broken down by month.
1. In your new workbook, Navigate to a New Worksheet and name

it “ Average Alert Trend”
2. From the Data pane, drop Alertdate in the Column shelf and

Total Alert in the Row Shelf
3. On the Columns shelf, right click Alertdate and select Month.
4. On the Rows shelf, right click Total Alert and select Measure

and Average. For example:

5. Select Area from the Mark section. For example :

7



The visualization updates to the following:

8



b. Total Alert : This view displays the total number of alerts that your
Clusters have generated within CM for CURRENTDAY -1.

1. Navigate to a New Worksheet and name it “Total Alert”
2. From the Data pane, drop Alertdate and Total Alert besides it in

the Column Shelf and Alertdate in the Row shelf.

3. On the Columns shelf, right click Alertdate and select Year.
Right click on TotalAlert and select Sum For example:

9



4. On the Rows shelf, right click Alertdate and select Day. For
example:

10



5. Select Square from the Mark section. For example :

6. Go to Filter section and drop Alertdate. Right click and select
Show Filter.

The visualization updates to the following:

11



c. Service Level Alert : This view displays the number of service level alerts
that your Clusters have generated within CM for CURRENTDAY -1.

1. Navigate to a New Worksheet and name it “Service Level Alert”
2. From the Data pane, drop Measure Values in the Column Shelf

for demonstrating the alert counts for each service and Measure
Names in the Row shelf. For example:

3. Select Square from the Mark section.
4. Drop Measure Names in Colour icon of the Mark section, to

help distinguish services represented by different colors.

For example :

5. Go to the Filter Section and Drop Measure Names. This step can
be followed to ease out the filtering process of your cluster
services.

The visualization updates to the following:

12



d. Weekly Trend of Total Alerts : This view provides a trend for total alert
counts broken down by week

1. Navigate to a New Worksheet and name it “Weekly Trend of
Total Alerts”

2. From the Data pane, drop Alertdate in the Column Shelf and
Total Alert in the Row shelf.

3. On the Columns shelf, right click Alertdate and selectWeek. For
example:

13



4. On the Rows shelf, right click Total Alert and select Sum. For
example:

5. Select Bar from the Mark section.
6. Click on Label from the Mark section and select Show Mark

Labels.

14



The visualization updates to the following:

15



e. Weekly Trend of Service Level Alerts : This view provides a trend for
service level alert counts broken down by week

1. Navigate to a New Worksheet and name it “Weekly Trend of
Service Level Alerts”

2. From the Data pane, drop Alertdate in the Column Shelf and
Measure Values in the Row shelf.

3. On the Columns shelf, right click Alertdate and selectWeek.
4. Drop Measure Names in Colour icon of the Marks section, to

help distinguish between services represented by different colors.

For example :

5. Go to the Filter Section and Drop Measure Names. This step is
optional, used to ease out the filtering process of your cluster
services.

The visualization updates to the following:

16



2. Getting the worksheets together and building the Dashboard

a. At the bottom of the workbook, click the New Dashboard icon:

b. Drag the views in your dashboard at the right, from the list of sheets list
on the left. For example :

17



c. You can use horizontal and vertical objects to provide a visual appeal to
the dashboard and group different worksheet views together. Example
demonstration:

1. Drag the horizontal object in your dashboard from the Objects
section. For example:

2. Next, drop the worksheets that you want to be grouped together
in the horizontal object. For example:

18



Note : You can design your dashboard as per your use case and visual
preferences.

d. Create an action to filter the data between Total Alert and Service Level
Alert Worksheet:

1. Click on Dashboard and Action.

2. Click on New Action, Select Source Sheets as Total Alert and
Run actions on Select. Select Target Sheets as Service Level
Alert and select “Exclude all values” in the Clearing the section.
For example:

19



How the action works:

20



It creates an interactive view, between the Total Alert and Service Level Alert worksheets, which
when clicked on the date on the left of the view, it automatically populates the data on the
right hand side view.

For more details and best practices on building a dashboard in Tableau refer link : Create a
Dashboard

Your dashboard visualization updates to the following if the worksheets are sequenced in as
shown in the below example:

21

https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm
https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm


Actionable Insights

1. Tracking progress of your cluster health overtime :

● Target 6 months of filtered data to maintain a comprehensive view of your cluster health
journey.

● Pay appropriate attention to any spikes over the area chart and identify the source of
the problem to understand which cluster services caused those spikes (explained in the
next section).

● If you observe a decrease over time it's a good indication that your cluster health is
progressing; whereas an increase indicates that your operations team should identify
the sources of problems (explained in the next section).

● If you notice odd spikes happening on a repetitive basis on a specific day or time,
identify the activities running on your cluster within that timespan to pinpoint root
cause.

2. Identifying problems, spotting issue trends, and taking action.

22



Now that you have visualized the overall trend of your cloudera manager generated
cluster alerts, let's find out the services that generated those issues.

● Target 6 months of filtered data to get a comprehensive view of your cluster and service
alarm issues.

23



● Pay attention to iterative patterns or sudden odd spikes within your “Weekly Trend of
Total Alerts” bar chart, and compare to the “Weekly Trend Of Service Level Alerts” bar
chart to identify which services caused the alerts increase.

● Observe and compare the present and past bar chart trend to visualize and understand
if there's an overall increase or reduction in the alert count.

● Keep a close eye on the “Weekly Trend of Service Level Alert” bar chart to understand
the health of your cluster services, by observing metrics like:

○ Service with the highest count of alerts (track this on a weekly and monthly
basis).

○ Spot repeated patterns and trends of the count at each service-level and get to
the source of the problem from Cloudera Manager to understand if there's
further need of service tuning and understand the activities happening on the
service during the issue timespan.

Lets illustrate the above insights through one example :

The number of average alarms gradually increased starting in the mid of August
continuing into September, as can be seen in the " Average Alert Trend" view.

24



When mapped out this trend with the “Weekly Trend of Total Alert” and “Weekly Trend
of Service Alerts” for that time span, you can see that the total alerts gradually
increased and went at an all time high of 351 in the mid week of September. It is clear
from the "Weekly Trend Of Service Level Alert" view that Solr 2 service was the main
cause of those alerts throughout that time. The next steps would be to fully explore the
service using the Cloudera Manager UI, identify the type of alarms occurring across that
service, and consider tuning the service.

3. Your daily view to take proactive immediate actions for long term
preventive measures.

25



● Monitor the number of alarms generated by your cluster on a daily basis and identify
the root cause of the service alarms from the Cloudera Manager UI.

● Examine the growth and decline patterns by comparing the current day count with the
previous six days.

Recommended Operational Processes
● Host daily standups to review insights and ongoing cluster issues, and to proactively

act on them.
● Periodically assess the effectiveness of utilizing the historic data view to improve the

cluster health.
● Enable maintenance mode during planned maintenance activities to differentiate

adverse activity caused by maintenance activities.
● Convert imperative cluster incidents, fly-in tasks, and alerts into trackable actions

through a streamlined incident and priority management processes.

26



Python

Python Code:

import json

import subprocess

import commands

from datetime import date

from datetime import datetime

from datetime import timedelta

import os

TODAY = str(date.today())

#defining variable YESTERDAY to capture current date-1 data

YESTERDAY = str(date.today() - timedelta(days=1))

ALL_COLUMN_NAME = {'alertdate': 0,'total_alert': 0}

ALL_SERVICE_LIST = ['alertdate TIMESTAMP','total_alert INT']

#Environment variables : mention the environment variables as per
your cluster parameters

URL = ‘CM URL’

27



DATABASE = 'databasename ' #database name where you want to
create table

TABLE_NAME = tablename'

HIVE_URL = 'HiveURL’'

PRINCIPLE = 'serviceprincipalname’'

#Create a keytab for the user through which this script is
scheduled to run.

os.system('kinit -kt /home/user/user.keytab
principalusername@domainname')

#This function extracts the cluster names from within CM using CM
API.

def cluster_name():

cluster = json.loads(subprocess.check_output("curl -k
--negotiate -u : {0}/api/v19/clusters".format(URL),shell=True))

all_cluster = [name['name'].encode('utf-8') for name in
cluster['items']]

return all_cluster

28



#This function extracts the service names from within clusters
using CM API

def service_name(cluster):

services = json.loads(subprocess.check_output("curl -k
--negotiate -u :
{0}/api/v1/clusters/{1}/services".format(URL,cluster),
shell=True))

for service in services['items']:

ALL_SERVICE_LIST.append(service["name"].encode('utf-8').lower()+
' INT')

#This function checks if the table exists or not within Hive
using the hive beeline command

def table_check(hive_url,principle,db,table):

select_string = 'select * from {}.{}'.format(db,table)

result_string = 'beeline -u
"jdbc:hive2://{0}/;principal={1};serviceDiscoveryMode=zooKeeper;z
ooKeeperNamespace=hiveserver2;hiveCreateAsExternalLegacy=true" -e
"{2}"'.format(hive_url,principle,select_string)

status, output = commands.getstatusoutput(result_string)

return status, output

29



#This function extracts the service names and defines it as
columns within the table

def get_col_name(cluster):

columns = json.loads(subprocess.check_output("curl -k
--negotiate -u :
{0}/api/v1/clusters/{1}/services".format(URL,cluster),
shell=True))

for col in columns['items']:

ALL_COLUMN_NAME[col["name"].encode('utf-8').lower()] =
0

#This function extracts the service alert counts generated by the
CM for current date-1 defined by parameter YESTERDAY using CM API

def service_alert_count(all_col):

start_of_day = '{}T00:00'.format(YESTERDAY)

end_of_day = '{}T23:59'.format(YESTERDAY)

services_with_alert = []

service_alert_count = all_col

#CM API calls to fetch the alert data

alert_count_string = "curl -k --negotiate -u :
{0}/api/v6/events?query=alert==true;severity==critical;timeReceiv
ed=ge={1}T00:00;timeReceived=lt={2}T23:59&limit=1000".format(URL,
YESTERDAY,YESTERDAY)

30



print(alert_count_string)

parse_data =
json.loads(subprocess.check_output(alert_count_string,
shell=True))

for item in parse_data['items']:

if start_of_day <= item['timeReceived'] <= end_of_day:

for att in item['attributes']:

if att['name']=='SERVICE':

services_with_alert.append(att['values'][0].lower())

print(services_with_alert)

for service in services_with_alert:

if service not in service_alert_count:

service_alert_count[service] = 1

else:

service_alert_count[service] += 1

31



return service_alert_count

#Defining Hive Beeline URL

def hive_table_create(hive_url,principle,query):

result_string = 'beeline -u
"jdbc:hive2://{0}/;principal={1};serviceDiscoveryMode=zooKeeper;z
ooKeeperNamespace=hiveserver2;hiveCreateAsExternalLegacy=true" -e
"{2}"'.format(hive_url,principle,query)

status, output = commands.getstatusoutput(result_string)

#Hive insert definition to insert alert count data under each
service column level.

def hive_table_insert(column,db,table,hive_url,principle):

all_colum = column

total_count = sum(all_colum.values())

all_colum['total_alert'] = total_count

all_colum['alertdate'] = YESTERDAY

colum_name = all_colum.keys()

colum_name = ', '.join(all_colum)

colum_value = tuple(all_colum.values())

32



insert_query = 'INSERT INTO table {0}.{1} ({2}) values
{3};'.format(db,table,colum_name,colum_value)

result_string = 'beeline -u
"jdbc:hive2://{0}/;principal={1};serviceDiscoveryMode=zooKeeper;z
ooKeeperNamespace=hiveserver2;hiveCreateAsExternalLegacy=true" -e
"{2}"'.format(hive_url,principle,insert_query)

status, output = commands.getstatusoutput(result_string)

def insert():

clusters = cluster_name()

for name in clusters:

get_col_name(name)

all_column_values = service_alert_count(ALL_COLUMN_NAME)

return all_column_values

#This definition checks and adds a new service column if a new
service was introduced into the cluster.

def table_column_check(hive_url,principle,database,table):
import re

33



table = subprocess.check_output('beeline -u
"jdbc:hive2://{0}/;principal={1};serviceDiscoveryMode=zooKeeper;z
ooKeeperNamespace=hiveserver2;hiveCreateAsExternalLegacy=true"
--silent=true -e "SHOW COLUMNS IN
{2}.{3};"'.format(hive_url,principle,database,table),shell=True)

alter_cmd = 'beeline -u
"jdbc:hive2://{0}/;principal={1};serviceDiscoveryMode=zooKeeper;z
ooKeeperNamespace=hiveserver2;hiveCreateAsExternalLegacy=true"
--silent=true -e "ALTER TABLE edhoperations.alerttable ADD
COLUMNS {2}"'

current_col_list = re.sub(r'\s+', ' ',
table).replace('|','').split()[3:-1]

all_col = insert()

all_col_list = all_col.keys()

s = set(current_col_list)

final_col_list = [x.encode('utf-8').lower() + ' INT' for x
in all_col_list if x not in s]

if len(final_col_list) == 0:

pass

elif len(final_col_list) == 1:

new_col_name = '(' + final_col_list[0] + ')'

subprocess.check_output(alter_cmd.format(hive_url,principle,new_c
ol_name),shell=True)

34



else:

new_col_name = tuple(final_col_list)

subprocess.check_output(alter_cmd.format(hive_url,principle,new_c
ol_name),shell=True)

if __name__ == "__main__":

table_check_status,table_check_output =
table_check(HIVE_URL,PRINCIPLE,DATABASE,TABLE_NAME)

if table_check_status == 0:

table_column_check(HIVE_URL,PRINCIPLE,DATABASE,TABLE_NAME)

all_column_values = insert()

hive_table_insert(all_column_values,DATABASE,TABLE_NAME,HIVE_URL,
PRINCIPLE)

else:

if 'GSSException: No valid credentials provided' in
table_check_output:

print("Error: No kerberos ticket available")

35



elif 'Table not found' in table_check_output:

clusters = cluster_name()

for name in clusters:

service_name(name)

create_table_query = "CREATE TABLE IF NOT EXISTS
{0}.{1} {2};".format(DATABASE, TABLE_NAME,
tuple(ALL_SERVICE_LIST))

create_table_query =
create_table_query.replace("'","")

hive_table_create(HIVE_URL,PRINCIPLE,create_table_query)

table_column_check(HIVE_URL,PRINCIPLE,DATABASE,TABLE_NAME)

all_column_values = insert()

final_insert_col =
hive_table_insert(all_column_values,DATABASE,TABLE_NAME,HIVE_URL,
PRINCIPLE)

os.system('kdestroy')

36


