
Transparency and Visibility
Yarn/Spark Jobs Monitoring Implementation Steps

Implementation

Implementing Yarn/Spark Jobs monitoring involves these tasks:.
1. Create external Hive table
2. Build and deploy NiFi Flow
3. Connect the table to a visualization tool
4. Build a dashboard
5. Implement end-user alerting mechanism

● Create External Hive Table

How it works: Create an external Hive table where the job failure data is stored on the
HDFS storage layer.

Steps to perform:

CREATE EXTERNAL TABLE edhoperations.edh_spark_monitor (id STRING,
username STRING, application_name STRING, queue STRING, status STRING,
exception STRING, job_type STRING, start_time STRING, finish_time STRING,
trackingurl STRING) PARTITIONED BY (snapshottime BIGINT) STORED AS
PARQUET LOCATION
'hdfs://nameservice1/user/hive/warehouse/edhoperations.db/edh_spark_monitor'

1

● Build and Deploy NiFi Flow

How it works: The Nifi flow uses the ExcecuteStreamCommand processor to retrieve
the yarn/spark job failure data in the JSON format from the YARN API every 3 hours.
The JSON output data is filtered and updated with new variables to get the required
JSON output data format, and finally all the jobs failure data is merged together in a
single file and imported into HDFS which is accessed by the Hive table for querying.

Steps to Perform:

1. Drag the Processor Group in the NiFi canvas to create a new NIFI workflow in
the UI with the name - Spark Monitoring.

2. Creating the NiFi Flow

Go inside the processor group to create the NiFi flow. For deploying this
workflow, we are using the below processors:

a. GenerateFlowFile
b. UpdateAttribute
c. ExecuteStreamCommand
d. SplitJson

2

e. EvaluateJsonPath
f. ReplaceText
g. MergeContent
h. PutParquate

The flow will look like below:

a. Generate Flow File Processor - Start by placing the Generate Flow File Processor in
the NiFi canvas. The processor properties are kept to Default.

It is scheduled to run every 10800 secs. For example:

3

b. UpdateAttribute - Define finish_time and start_time variables in the UpdateAttribute
Processor which will be used in the Yarn API to fetch the last 3 hours job failure data.

The processor properties looks like below:

c. ExecuteStreamCommand - This processor makes Yarn API calls every 3 hours to fetch
last 3 hours job failure data in JSON format. It executes a curl command against the
YARN API string to retrieve the data.

The processor properties looks like below:

4

Command Arguments value -

The Run Schedule of this processor is set to 10900 sec.

d. SplitJSON - This processor splits the JSON file output received from the previous
processor and splits them into multiple flowfiles on the job level, for an array element
(apps- in this case) specified in the JsonPathExpression.

The processor properties looks like below:

e. EvaluateJsonPath - This processor evaluates one or more JsonPath expressions
against the content of a FlowFile. According to the processor settings, the Expressions
are either assigned to FlowFile attributes or written to the content of the FlowFile
processor. With the JSON array data that was obtained as output from the SplitJSON
processor, this processor extracts the needed job details.

The data we are fetching from the FlowFile : Application Type, Application id,
Application Name, Queue, Username, Tracking URL, Application Status, Start time,
Finish time and Diagnostics.

The processor properties looks like below:

5

f. UpdateAttribute - Defines diagnostics, finishedTime and startedTime variables.

The processor properties looks like below:

g. ReplaceText - This processor updated the content of a FlowFle by searching for value
“(?s)(^.*$)” and replaces it with value
“${id:escapeCsv()},${user:escapeCsv()},${name:escapeCsv()},${queue:escapeCsv
()},${finalStatus:escapeCsv()},${diagnostics:escapeCsv()},${applicationType:esca
peCsv()},${startedTime:escapeCsv()},${finishedTime:escapeCsv()},${trackingUrl:e
scapeCsv()} “ as defined in the processor properties. For example:

6

h. MergeContent : This processor combines various FlowFiles that are produced at the job
level by the ReplaceText processor into a single FlowFile.

The processor properties looks like below:

i. UpdateAttribute - Defines airflow_date, filename and partition_snapshottime variables.

The processor properties looks like below:

7

j. PutParquet - The PutParquet Processor loads the failed processor data into HDFS in
CSV format. The CSV file data is imported into a different directory for every new
partition_snapshot.

Directory Value:

8

k. ExecuteStreamCommand - In order to update the Hive Table with the new data, this
ExecuteStreamCommand alters the external hive table to add the partition "partition
snapshottime" and loads the data from the HDFS directory location specified in the
previous step.

The processor properties looks like below:

Command Argument Value :

● Connect the table to a visualization tool

How it works: To explore and represent the data, you can make use of any visualization
tool that has connectivity to Hive or Impala through a JDBC/ODBC connection. We’ll
demonstrate using Tableau.

Steps to Perform:

Follow the article link Cloudera Hadoop Tableau Connection to connect Tableau to a
Cloudera Data Platform Hive Hadoop Database.

● Building your Visualization Dashboard

9

https://help.tableau.com/current/pro/desktop/en-us/examples_hadoop.htm#:~:text=Start%20Tableau%20and%20under%20Connect,the%20port%20number%20to%20use

How it works: The basic structure of your visualization should look like below, different
views bundled together.

Before you begin: Make sure that you have connected to your table data source.

Steps to Perform:

a. Weekly Job Failure Trend: This view displays a weekly trend showing
spark/yarn job failure rate over an area chart.

1. Navigate to a New Worksheet and name it “Weekly Job Failure Trend”.

10

2. In the Columns shelf, drop Finish Time and select Week in the format
Week 5, 2015.

3. In the Rows shelf, drop Id, right-click and select Measure -> Count.
4. Select Area representation from the Marks section

The visualization updates to the following:

b. Daily Yarn/Spark Job Failure Count : This view displays the total daily failure
rate for yarn/spark jobs.

1. Navigate to a New Worksheet and name it “Daily Yarn/Spark Job Failure
Count”.

2. In the Columns shelf, drop Finish Time and select Day in the format
8th May, 2015.

3. In the Rows shelf, drop Id, right-click and select Measure -> Count.
4. Select Bar Graph representation from the Marks section and Select

Show Labels from the Labels icon.
5. In the Filters section, drop the Finish Time field, Select Edit Filter ->

Select Relative Dates -> select Days from the drop down and enter 7 in
the Last days tab.

The visualization updates to the following:

11

c. Application Based Job Failure Count : This view displays the total daily failure
rate for different yarn and spark applications, where different colors are used
for representing different job applications.

1. Navigate to a New Worksheet and name it “Application Based Job
Failure Count”.

2. In the Columns shelf, drop Finish Time and select Day in the format
8th May, 2015.

3. In the Rows shelf, drop Id, right-click and select Measure -> Count.
4. Select Bar Graph representation from the Marks section and Select

Show Labels from the Labels icon.
5. In the Marks section, drop Application Name in the Color icon
6. In the Filters section, drop the Finish Time field, Select Edit Filter ->

Select Relative Dates -> select Days from the drop down and enter 7 in
the Last days tab.

The visualization updates to the following:

12

d. Job Details : This view displays job failure details like Application name,
Tracking URL, Job Type for further troubleshooting.

1. Navigate to a New Worksheet and name it “Job Details”.
2. In the Rows shelf, drop Status, Application Name, Job Type and

Tracking URL in series.
3. In the Marks section, drop Application Name in the Color icon.
4. In the Filters section, drop Finish Time and Application Name fields.

Select Show Filter for both the fields.

13

The visualization updates to the following:

e. Job Failed Count (15 Days) : This view displays the job failure count for the last
15 days.

1. Navigate to a New Worksheet and name it “Job Failed Count (15
Days)”.

2. In the Marks section, drop Application Name in the Text icon and
Select Measure-> Count. For example:

3. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 15
in the Last days tab.

The visualization updates to the following:

14

f. Distinct Job Failed Count (15 Days) : This view displays the distinct job failure
count for the last 15 days.

1. Navigate to a New Worksheet and name it “Distinct Job Failed Count
(15 Days)”.

2. In the Marks section, drop Application Name in the Text icon and
Select Measure-> Count (Distinct) . For example:

3. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 15
in the Last days tab.

The visualization updates to the following:

15

2. Gathering the views to build the dashboard
a. At the bottom of the workbook, click the New Dashboard icon:

b. You can use horizontal and vertical objects to provide a visual appeal to
the dashboard and group different worksheet views together.

c. Make use of filters on your views where necessary.

Note : Design your dashboard as per your visualization preferences.

For more details and best practices on building a dashboard in Tableau refer link :
Create a Dashboard

Your dashboard visualization updates as below if the views are sequenced properly:

16

https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm

17

● Implement end-user alerting mechanism

How it works: The deployed airflow dag scheduled to run every 23 hours scans across
the hive table to collect the day-1 job failure data, and then sends an email alert with
the failure details to the data-engineering team.

Steps to perform: On the Airflow master host, deploy the below dag code in the dags
directory and schedule it to run every 23 hours

Airflow Dag Code: Spark/Yarn Alert Code provided at the end of this article

Note: The code provided is merely for reference purposes. Customize the airflow dag
as per your environment requirements.

Actionable Insights

A good rule of thumb is to keep a view of data showing no less than 6 months to give
you a comprehensive view.

1. Tracking progress overtime :

18

● Pay appropriate attention to any increase in the number of failures using the area chart
above, and identify which job applications spiked those problems. Use the views in the
next section to get job details for further troubleshooting.

● Observe and compare the present and past numbers to visualize and understand if
there's an overall increase or reduction in the trend of failure rate. If your visual
observes a decrease in the failure trend it's a good indication that your Spark/Yarn job
failures are decreasing; however, if they are increasing, it may be an indication that your
operations team should identify and action root causes (see next section).

2. Your daily/weekly view for identifying problems, spotting issue trends,
and taking action for long term preventive measures.

● “Daily Spark/Yarn Job Failure Count” and “Application Based Job Failure Count”-
Keep a close eye on the total number of daily job failures and identify the names of
jobs using the “Application Based Job Failure Count” view. Assess the job applications
with the highest failure count.

19

● “Job Details” : Use this view to get job failure details like Application Name, Job Type
and Tracking URL to further troubleshoot and accelerate the root cause using the Job
History Server UI and Tracking URL.

● “Job Failed Count (15 Days)” and “Distinct Job Failed Count (15 Days) : Observe the
distinct job failure count and determine the application names adding to the total
failures.

Recommended Operational Processes

● Scheduled daily monitoring calls to analyze Spark/Yarn job failures and troubleshoot
with the help of the dashboard views.

● KPIs to closely monitor daily :
1. Increase or sudden spikes in the total yarn/spark job failure rate.
2. Job Application names resulting in the highest number of failures.
3. Should any of the failures prompt either job tuning or service tuning?

● Periodically assess the progress of the failure rate utilizing the historic data trend view
to reduce failure count.

20

Python

Spark/Yarn Alert Code
#Importing the Modules
from datetime import datetime, timedelta
import json
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.jdbc.operators.jdbc import JdbcOperator
from airflow.models.variable import Variable
from airflow.operators.email_operator import EmailOperator
from airflow.providers.jdbc.hooks.jdbc import JdbcHook
import pandas as pd
from email.mime.text import MIMEText
from email.mime.application import MIMEApplication
from email.mime.multipart import MIMEMultipart
from smtplib import SMTP
import smtplib
import sys

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'email': ['job owner email address'],
'email_on_failure': True,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=2)

}

doc = '''
##Spark/Yarn dag to send an email to the Data engineering team informing about
the job failures that occurred in the last 24 hours.

''

#Initiating the Dag '

JOB_ID = 'EDH_spark_jobs_monitoring'

dag = DAG(
dag_id=JOB_ID,
doc_md=doc,

21

default_args=default_args,
description='EDH_spark_jobs_monitoring',
schedule_interval="0 */23 * * *",
start_date=datetime(2021, 1, 1),
tags=['EDH', 'Monitoring', 'failure jobs'],
max_active_runs=1,
catchup=False

)

#Defining a callable function

def func(jdbc_conn_id, sql, **kwargs):
"""Print df from JDBC """
print(kwargs)
hook = JdbcHook(jdbc_conn_id=jdbc_conn_id)
df = hook.get_pandas_df(sql=sql,parameters=None)
print("printing the jobs details")
print(df.to_string())
recipients = ['recipient email address']
msg = MIMEMultipart()
msg['Subject'] = "Yarn/Spark Job Failures For DAY-1"
msg['From'] = 'sender email address'

html = """\
<html>
<head></head>
<body>

<pre>
Hello Team,

Below is the list of Spark/Yarn jobs that failed in the last 24 hours. Please
check on priority level.

Yarn UI - Pass the link to the Yarn UI for further troubleshooting
For more details on ERROR/Exception, please check the dashboard - <Link to the
visualization>

</pre>

{0}

<pre>

22

Please reach out to the ops team in case of any queries.

Regards
OPS TEAM

</pre>

</body>
</html>
""".format(df.to_html())

part1 = MIMEText(html, 'html')
msg.attach(part1)

server = smtplib.SMTP('SMTP Server Hostname', 25)
server.sendmail(msg['From'], 'recipient email address ' , msg.as_string())

#Creating a Task

run_this = PythonOperator(
task_id='Job_owner_details',
python_callable=func,

op_kwargs={'jdbc_conn_id': 'dcoe_impala', 'sql': 'select
username,application_name, queue, status, job_type, count(*) as count from
edhoperations.edh_spark_monitor where snapshottime = (select max(snapshottime)
from edhoperations.edh_spark_monitor) group by username,application_name,
queue, status,job_type HAVING COUNT(*) > 0;' },

dag=dag,
)

23

