CLOUD=RA

Transparency and Visibility
Yarn/Spark Jobs Monitoring Implementation Steps

Implementation

Implementing Yarn/Spark Jobs monitoring involves these tasks:.
1. Create external Hive table

Build and deploy NiFi Flow

Connect the table to a visualization tool

Build a dashboard

Implement end-user alerting mechanism

ok wbd

e Create External Hive Table

How it works: Create an external Hive table where the job failure data is stored on the
HDFS storage layer.

Steps to perform:

CREATE EXTERNAL TABLE edhoperations.edh_spark_monitor (id STRING,
username STRING, application_name STRING, queue STRING, status STRING,
exception STRING, job_type STRING, start_time STRING, finish_time STRING,
trackingurl STRING) PARTITIONED BY (snapshottime BIGINT) STORED AS
PARQUET LOCATION
'hdfs://nameservice1/user/hive/warehouse/edhoperations.db/edh_spark_monitor'

CLOUD=RA

e Build and Deploy NiFi Flow

How it works: The Nifi flow uses the ExcecuteStreamCommand processor to retrieve
the yarn/spark job failure data in the JSON format from the YARN API every 3 hours.
The JSON output data is filtered and updated with new variables to get the required
JSON output data format, and finally all the jobs failure data is merged together in a
single file and imported into HDFS which is accessed by the Hive table for querying.

Steps to Perform:

1. Drag the Processor Group in the NiFi canvas to create a new NIFI workflow in
the Ul with the name - Spark Monitoring.

sk EDH Spark Monitoring
0 0 12 0 0 0

Queued 0 (0 bytes)

In 0 (0 bytes) + 0 5 min
Read/Write 0 bytes / 0 bytes 5 min
Out 0 — 0 (0 bytes) 5 min

0 0 0 070

2. Creating the NiFi Flow

Go inside the processor group to create the NiFi flow. For deploying this
workflow, we are using the below processors:

a. GenerateFlowFile

b. UpdateAttribute

c. ExecuteStreamCommand
d. SplitJson

CLOUD=RA

. EvaluateJsonPath
ReplaceText
MergeContent

. PutParquate

>Q S o

The flow will look like below:

gfl?f?:ﬁmrvflwe 522130125 o t‘pda(eff:'i‘lffﬂe 522130125 U=) ExecuteStreamCommand
GenerateFlowFile 1.15.221.3.0-12 < ibute 1.15.2.21.3.0125 3 mCommand s
‘org.apache.nifi - nifi-standard-n: he.nifi - nifi-update-attribute-nar L-'—/ Ev’f: i - nif. o d " 152213002
In 0(0bytes) Effiacelstosses 0(0bytes) § Name success
Queued 0(0 bytes) 5 L)
Read/Write 0 bytes /0 bytes 5 mit 2 sad/Write 0 bytes /0 bytes 5 Queued 0 (0 bytes) Firite O bytos 2 byies
out :v:l’ l;y;eos]n - ‘Smm out :(un:y:’s; - 5min out B
Tasks/Time 0/ 5 min Tasks/Time 0/ omn Tasks/Time 0/ 00:00:00.000
1
Name output stream
Queued 0 (0 bytes)
e EvaluateJsonPath SRson 152213
JsonPatn 11522130125 agspache -
m 5min Name matched n Name split 0 (0 bytes) 5 min
in Queued 0 (0 bytes) Queued 0 (0 bytes) p 5 min
Read/Write :bﬂy\:s /0 bytes. E min (0 bytes) Read/Write 0 bytes /0 bytes Queu (0 bytes) 'rite : boy\:s 7 l: bytes :- mi
e S e ST
asks/Time 0/ : Smin Tasks/Time 0/ 00.00:00.000 o asks/Time 0/ 5mi
Name success
Queued 0 (0 bytes)
&) =]) MergeContent =] » Updateattribute
S MergeContent 115.2.2.1.3.0125 O ¥ Updateatribute 1.152.2.1.3.0125
org apacheni - nfstandarda orgapache - pdat-atbuenr
I 5 min Name success Name merged
a 0(0bytes) 5 0(0bytes) Smin
ad/Write tes. tes. 5min d 0 (0 by
Read/Write Obytes /0 byt S Queed 9 Qbyies) ~—lead/Write 0 bytes /0 bytes § Queved 0 (0 bytes) IWrite 0 bytes/ 0 bytes 5min
ont O@L) s out 0 (0 bytes) 5 out 0(0bytes) 5 min
Tasks/Time 0/00:00:00.000 omn Tasks/Time 0/ 00:00:00.000 § min Tasks/Time 0/ 00:00:00.000 5 min
Name success
Queued 0 (0 bytes)
v DES PutParquet
D=) ExecuteStreamCommand S 2ia010s PutParquet 1.15.2.21.30-125
O) » ExecutesueamCommand 11522130125 L 210 o apache - i parquetar
[e rios T - Name success 0(0bytes) g Smin
e 5 rit tes. 5 mi
in (0 bytes) ™ ueued 0 (0 bytes) RirWiite Obrtes! Obytes - Queued 0 (0 bytes) U/Write 0 bytes / 0 byt
Read/Write 0 bytes /0 bytes 5 mi. o o) = out 0 (0 bytes) 5 min
2 u ytes smin
Out 0 (0 bytes) Smin Tasks/Time 5,222 / 00:00:00.325 5min
Tasks/Time 0/ 00:00:00.000 5min Tasks/Time 0/00:00:00.000 omn

a. Generate Flow File Processor - Start by placing the Generate Flow File Processor in
the NiFi canvas. The processor properties are kept to Default.

It is scheduled to run every 10800 secs. For example:

CLOUD=RA

SETTINGS SCHEDULING

Scheduling Strategy @
Timer driven

Concurrent Tasks @
1

Execution @
Primary node only

PROPERTIES COMMENTS

Run Duration @
00:00:00.000

Run Schedule @
10800 sec

b. UpdateAttribute - Define finish_time and start_time variables in the UpdateAttribute
Processor which will be used in the Yarn API to fetch the last 3 hours job failure data.

The processor properties looks like below:

SETTINGS SCHEDULING PROPERTIES COMMENTS

Required field

Delete Attributes Expression
Store State

Stateful Variables Initial Value
Cache Value Lookup Cache Size
finish_time

start_time

Property Value

%] lo value set

@ Do not store state

[2] lo value set

@ 100

@ S${now():toNumber()}

@ ${now():minus(10800000)}

c. ExecuteStreamCommand - This processor makes Yarn API calls every 3 hours to fetch
last 3 hours job failure data in JSON format. It executes a curl command against the
YARN API string to retrieve the data.

The processor properties looks like below:

Command Path

Ignore STDIN

Working Directory
Argument Delimiter

Output Destination Attribute
Max Attribute Length

curl
false

R R R

CLOUD=RA

Command Arguments value -

-v;--insecure;--anyauth;--user;api_spark_user:<password>;-H;" Accept:
application/json”;-H;" Content-Type:
application/json";-X;GET;https://<Resource Manager
Hostname>:8090/ws/v1/cluster/appsfinalStatus=FAILED&startedTimeBe
gin=5%{start_time}&finishedTimeEnd="%{finish_time}

The Run Schedule of this processor is set to 10900 sec.
SplitJSON - This processor splits the JSON file output received from the previous
processor and splits them into multiple flowfiles on the job level, for an array element

(apps- in this case) specified in the JsonPathExpression.

The processor properties looks like below:

SETTINGS SCHEDULING PROPERTIES COMMENTS

Required field

Property Value
JsonPath Expression © S.apps.app
Null Value Representation © empty string

EvaluateJsonPath - This processor evaluates one or more JsonPath expressions
against the content of a FlowFile. According to the processor settings, the Expressions
are either assigned to FlowFile attributes or written to the content of the FlowFile
processor. With the JSON array data that was obtained as output from the SplitJSON
processor, this processor extracts the needed job details.

The data we are fetching from the FlowFile : Application Type, Application id,
Application Name, Queue, Username, Tracking URL, Application Status, Start time,

Finish time and Diagnostics.

The processor properties looks like below:

CLOUD=RA

Required field

Property Value
Destination © flowfile-attribute
Return Type © auto-detect

applicationType @ S.applicationType
diagnostics ©® 5.diagnostics
finalStatus ® SfinalStatus
finishedTime @ S finishedTime

id @ Sid

name @ S.name

queue ® S.queue
startedTime © SstartedTime
trackingUrl © S.trackingUrl

user @ S.user

f. UpdateAttribute - Defines diagnostics, finishedTime and startedTime variables.

The processor properties looks like below:

Required field

Property Value

Delete Attributes Expression @ Novalue set

Store State © Do not store state

Stateful Variables Initial Value © | No value set

Cache Value Lookup Cache Size © 100

diagnostics © ${diagnostics:substring(0, 60)}

finishedTime 9 S${finishedTime:format("yyyy-MM-dd HH:mm:ss")}
startedTime © S{startedTime:format("yyyy-MM-dd HH:mm:ss")}

g. ReplaceText - This processor updated the content of a FlowFle by searching for value
"(?s)(N.*$)" and replaces it with value
“${id:escapeCsv()},${user:escapeCsv()},${name:escapeCsv()},${queue:escapeCsv
()},${finalStatus:escapeCsv()},${diagnostics:escapeCsv()},${applicationType:esca
peCsv()},${startedTime:escapeCsv()},${finishedTime:escapeCsv()},${trackingUrl:e
scapeCsv()} “ as defined in the processor properties. For example:

CLOUDZ=RA

Required field
Search Value (?s)(".*$)
Replacement Value ${id:escapeCsv()},${user:escapeCsv()},${name:escapeCsv(...
Character Set UTF-8
Maximum Buffer Size 1MB

Replacement Strategy Always Replace

Evaluation Mode Entire text

OO O OO OO

Line-by-Line Evaluation Mode All

h. MergeContent : This processor combines various FlowFiles that are produced at the job
level by the ReplaceText processor into a single FlowFile.

The processor properties looks like below:

SETTINGS SCHEDULING PROPERTIES COMMENTS

Required field

Property Value

Merge Strategy © Bin-Packing Algorithm
Merge Format © Binary Concatenation
Attribute Strategy © Keep Only Common Attributes
Correlation Attribute Name ©@ | Novalue set

Minimum Number of Entries ® s

Maximum Number of Entries e 1000

Minimum Group Size © 0B

Maximum Group Size @ Novalue set

Max Bin Age ©® | Novalue set
Maximum number of Bins e 5

Delimiter Strategy © Text

Header ©® Novalue set

i. UpdateAttribute - Defines airflow_date, filename and partition_snapshottime variables.

The processor properties looks like below:

i-

CLOUDZ=RA

Required field

Property Value

Delete Attributes Expression

Store State

Stateful Variables Initial Value

Cache Value Lookup Cache Size

airflow_date
filename

partition_snapshottime

No value set

Do not store state

No value set

100
${now():minus(86400000):format("yyyy-MM-dd")}
S{UUID()}.csv
S{now():format("yyyyMMddHHmmss")}

O 9O ®© O 0O ® O

PutParquet - The PutParquet Processor loads the failed processor data into HDFS in
CSV format. The CSV file data is imported into a different directory for every new
partition_snapshot.

SETTINGS SCHEDULING

PROPERTIES

COMMENTS

Required field

Property Value

Hadoop Configuration Resources
Kerberos Credentials Service
Kerberos User Service

Kerberos Principal

Kerberos Keytab

Kerberos Password

Kerberos Relogin Period
Additional Classpath Resources
Record Reader

Directory

Compression Type

Overwrite Files

L S S |

© +

Path to the core-site.xml file

No value set

No value set

kerberos user principal name

path to the user keytab file

No value set

4hours

No value set

CSVReader -
fedhoperations/data/processed/snapshot/edh_nifi_monito...
SNAPPY

false

S O O O OO OO OO OO

>

Directory Value:

1 /edhoperations/data/processed/snapshot/edh_spark monitor/snapshot=5{partition snapshottime} /‘

CLOUD=RA

k. ExecuteStreamCommand - In order to update the Hive Table with the new data, this
ExecuteStreamCommand alters the external hive table to add the partition "partition
snapshottime" and loads the data from the HDFS directory location specified in the
previous step.

The processor properties looks like below:

Command Path © /ust/bin/impala-shell
Ignore STDIN 0 true

Working Directory]

Argument Delimiter 0 ;

Output Destination Attribute]

Max Attribute Length 0 25

Command Argument Value :

-k;--ssl;-i;<impalagatewayhostname=>;-q; " alter table
edhoperations.edh_spark_monitor add partition
(snapshottime=%{partition_snapshottime}) location
'Yedhoperations/data/processed/snapshot/edh_spark_
monitor/snapshot=%{partition_snapshottime}/""

e Connect the table to a visualization tool

How it works: To explore and represent the data, you can make use of any visualization
tool that has connectivity to Hive or Impala through a JDBC/ODBC connection. We'll
demonstrate using Tableau.

Steps to Perform:

Follow the article link Cloudera Hadoop Tableau Connection to connect Tableau to a
Cloudera Data Platform Hive Hadoop Database.

e Building your Visualization Dashboard

https://help.tableau.com/current/pro/desktop/en-us/examples_hadoop.htm#:~:text=Start%20Tableau%20and%20under%20Connect,the%20port%20number%20to%20use

CLOUDZ=RA

How it works: The basic structure of your visualization should look like below, different
views bundled together.

Job Failure Count

1500

1000

WEEKLY JOB FAILURE TREND

10 107 g

4 9 o 3 2 50

1248

748 v 2 e

2430122 7hugzz 21Augz2 4Septz 20ct22 160ctzz 300ct22 13Novz2 27NovZZ

185ept 22

Week of Finish Time

11Deczz 25Dec2z 8Janz3 22Jan23 5Feb23 19Feb23 SMar23 19Marz3

Job Failure Count

DAILY SPARK/YARN JOB FAILURE COUNT

Job Failure Count

7March 2023
Day of Finish Time [March 2023]

APPLICATION BASED JOB FAILURE COUNT

Day of Finish Time

2

BMarch2023 9March2023 10March2023 11March2023 12March2023 13March2023

Status
FAILED

JOBS DETAILS

Application Name Job Type
airflow_spark_cdp_metering_update_usage SPARK

trackingurl

TEErEEY

Billingplatform_daily_sanpshots_PROD_accou, SPARK

SPARK 16712..
ion_16712..
16712..
16712..
16712..
16712..

com.cloudera edh.logs.processor.L

16712..
16712..
16712..
16712.
16712..
16712..
16712..
ion_16712..
16712.
16712..
16712..
16712..

16712..
16712..

DATE
Last 15days.

62

Before you begin: Make sure that you have connected to your table data source.

Steps to Perform:

a.

Weekly Job Failure Trend: This view displays a weekly trend showing

spark/yarn job failure rate over an area chart

1. Navigate to a New Worksheet and name it “Weekly Job Failure Trend”.

10

CLOUD=RA

2. In the Columns shelf, drop Finish Time and select Week in the format
Week 5, 2015.
3. In the Rows shelf, drop Id, right-click and select Measure -> Count.
4. Select Area representation from the Marks section
The visualization updates to the following:

b. Daily Yarn/Spark Job Failure Count : This view displays the total daily failure
rate for yarn/spark jobs.

1. Navigate to a New Worksheet and name it “Daily Yarn/Spark Job Failure
Count”.

2. In the Columns shelf, drop Finish Time and select Day in the format
8th May, 2015.

3. In the Rows shelf, drop Id, right-click and select Measure -> Count.

4. Select Bar Graph representation from the Marks section and Select
Show Labels from the Labels icon.

5. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 7 in
the Last days tab.

The visualization updates to the following:

11

CLOUD=RA

c. Application Based Job Failure Count : This view displays the total daily failure
rate for different yarn and spark applications, where different colors are used
for representing different job applications.

1. Navigate to a New Worksheet and name it “Application Based Job
Failure Count”.

2. In the Columns shelf, drop Finish Time and select Day in the format
8th May, 2015.

3. In the Rows shelf, drop Id, right-click and select Measure -> Count.

4. Select Bar Graph representation from the Marks section and Select
Show Labels from the Labels icon.

5. In the Marks section, drop Application Name in the Color icon

6. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 7 in
the Last days tab.

The visualization updates to the following:

12

CLOUDZ=RA

APPLICATION BASED JOB FAILURE COUNT

Baw af Finich Time

zo0

leoFallreCount

d. Job Details : This view displays job failure details like Application name,
Tracking URL, Job Type for further troubleshooting.

1.
2.

Navigate to a New Worksheet and name it “Job Details”.

In the Rows shelf, drop Status, Application Name, Job Type and
Tracking URL in series.

In the Marks section, drop Application Name in the Color icon.

In the Filters section, drop Finish Time and Application Name fields.
Select Show Filter for both the fields.

13

CLOUD=RA

The visualization updates to the following:

JOBS DETAILS

Status Applica
FalLED airflow_spark_cdp_r

Job Type
o usoge SPARK

com.cloudera.edh.metrics.MetricsProcessor SPARK

audera edh queryprofile QueryProfilePro. SPARK

sales_hbase_export UAT_test SPARK
Yarn Application Bundie ETL SPARK

(A AR ﬂﬁ(e‘ﬂﬂlﬁﬂlfSﬁ(IIIIIIIIIIIlIIIIIIlIIlIIIIIIIIIIIIIIIIIIIIII.II

e. Job Failed Count (15 Days) : This view displays the job failure count for the last
15 days.
1. Navigate to a New Worksheet and name it “Job Failed Count (15
Days)".
2. In the Marks section, drop Application Name in the Text icon and
Select Measure-> Count. For example:

~ Marks
[T Automatic 4
$ | o | O
Colour Size Text
& || ©

Detail Tooltip

N CNT(Application Na...

3. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 15
in the Last days tab.

The visualization updates to the following:

14

CLOUD=RA

f. Distinct Job Failed Count (15 Days) : This view displays the distinct job failure
count for the last 15 days.
1. Navigate to a New Worksheet and name it “Distinct Job Failed Count
(15 Days)".
2. In the Marks section, drop Application Name in the Text icon and
Select Measure-> Count (Distinct) . For example:

~ Marks
[T Automatic v
-+ & [T
Colour Size Text
L]
G [

Detail Tooltip

[N CNTD(Application ...

3. In the Filters section, drop the Finish Time field, Select Edit Filter ->
Select Relative Dates -> select Days from the drop down and enter 15
in the Last days tab.

The visualization updates to the following:

15

CLOUD=RA

2. Gathering the views to build the dashboard
a. At the bottom of the workbook, click the New Dashboard icon:

Table Map B B

b. You can use horizontal and vertical objects to provide a visual appeal to
the dashboard and group different worksheet views together.
c. Make use of filters on your views where necessary.

Note : Design your dashboard as per your visualization preferences.

For more details and best practices on building a dashboard in Tableau refer link :
Create a Dashboard

Your dashboard visualization updates as below if the views are sequenced properly:

16

https://help.tableau.com/current/pro/desktop/en-us/dashboards_create.htm

CLOUDZ=RA

WEEKLY JOB FAILURE TREND

1500
1248
3
® 1000
3
500
88
o 9 g 3 - S0 67 ag 1 2 8 2
2ajlzz 7Augzz 2lAuigzz 4Septzz 18Seprzz 20ctzz 160ct2z 300ctzz 13Novzz 27Novzz 1lDeczz 25Deczz BJan23 224an2z3 SFeb23 19Feb23 SMarz3 19Mar23
‘Week of Finish Time
DAILY SPARK/YARN JOB FAILURE COUNT APPLICATION BASED JOB FAILURE COUNT
Day of Finish Time
20 20
15 is
8 £ 5
5
H H
i 2 10
3 2
5
g
5 -)
’ 7 - R
8 Mar 9Nar 10Mar 11 Mar 12Mar 13Mar 14Mar o
TMarch2023 BMarch2023 9March2023 10March2023 11March2023 12March2023 13 March2023
Day of Finish Time [March 2023]
JOBS DETAILS DATE
. . Last 15days -
Status Application Name Job Type trackingurl
FAILED airflow_spark_cdp_metering_update_usage ~ SPARK

Billingplatform_daily_sanpshots_PROD_accou. SPARK

com.cloudera.edh.logs. processor.LogProcessor SPARK

&
EEEEEEEEEEEEEEEEEEEEEEEEEE

62
7

17

CLOUD=RA

® |Implement end-user alerting mechanism

How it works: The deployed airflow dag scheduled to run every 23 hours scans across
the hive table to collect the day-1 job failure data, and then sends an email alert with
the failure details to the data-engineering team.

Steps to perform: On the Airflow master host, deploy the below dag code in the dags
directory and schedule it to run every 23 hours

Airflow Dag Code: Spark/Yarn Alert Code provided at the end of this article

Note: The code provided is merely for reference purposes. Customize the airflow dag
as per your environment requirements.

Actionable Insights

A good rule of thumb is to keep a view of data showing no less than 6 months to give
you a comprehensive view.

1. Tracking progress overtime :

L7831 755

1,248

2000 |
| 1017
| 789

Job Failure Count

N N e

88 |
50 67 48 |
B B e ——— S ° Z

0 13 136
24Jul22 7Aug22 21Aug22 45ept 22 185ept22 20ct22 160ct 22 300ct22 13 Nov 22 27 Nov 22 11Dec22 25Dec 22 8Jan23 22Jan23 5Feb23 19Feb23 S5Mar23 15 Mar 23

Week of Finish Time

18

CLOUD=RA

e Pay appropriate attention to any increase in the number of failures using the area chart
above, and identify which job applications spiked those problems. Use the views in the
next section to get job details for further troubleshooting.

e Observe and compare the present and past numbers to visualize and understand if
there's an overall increase or reduction in the trend of failure rate. If your visual
observes a decrease in the failure trend it's a good indication that your Spark/Yarn job
failures are decreasing; however, if they are increasing, it may be an indication that your
operations team should identify and action root causes (see next section).

2. Your daily/weekly view for identifying problems, spotting issue trends,
and taking action for long term preventive measures.

DAILY SPARK/YARN JOB FAILURE COUNT APPLICATION BASED JOB FAILURE COUNT

Day of Finish Time

20
20
14
1
10
2
- 5
- 2 :
2
2 3 H

0

20

10

s s
4
3
0 --

Job Failure Count.
Job Failure Count

8Mar oMar 10 Mar 11Mar 12Mar 13Mar 14 Mar
TMarch2023 BMarch2023 SMarch2023 10Marh2023 11March2023 12March2023 13March2023
Day of Finish Time [March 2023]
JOBS DETAILS DATE
Last 15 daye
Status Application Name Job Type trackingurl
FAILED airflow_spark_cdp_metering_update_usage SPARK edh.cloudera =
edh.cloudera u
03.edh.c =
03.edh.c
03.edh.c
Billingplatform_daily_sanpshots_PROD_accou. SPARK)03.edh.cl .
: 03.edh.c 62
com.cloudera.edh.| ocessor.Logl SPARK 103.edh.cl 16712, 7

03.edh.cl

03.edh.clou

03.dh.cl

03.edh.clou

03.edh.clou

03.edh.cl

03.edh.clou

03.edh.clou

03.edh.cl

03.edh.cloudera.

03.edh.clou

03.edh.cl

edh.clou

edh.clou

edh.cl

edh.clou

edh.clou

edh.cl
03.edh.clou

e "Daily Spark/Yarn Job Failure Count” and “Application Based Job Failure Count”-
Keep a close eye on the total number of daily job failures and identify the names of
jobs using the “Application Based Job Failure Count” view. Assess the job applications
with the highest failure count.

19

CLOUD=RA

e "Job Details” : Use this view to get job failure details like Application Name, Job Type
and Tracking URL to further troubleshoot and accelerate the root cause using the Job
History Server Ul and Tracking URL.

e "Job Failed Count (15 Days)” and “Distinct Job Failed Count (15 Days) : Observe the
distinct job failure count and determine the application names adding to the total
failures.

Recommended Operational Processes

e Scheduled daily monitoring calls to analyze Spark/Yarn job failures and troubleshoot
with the help of the dashboard views.
e KPIs to closely monitor daily :
1. Increase or sudden spikes in the total yarn/spark job failure rate.
2. Job Application names resulting in the highest number of failures.
3. Should any of the failures prompt either job tuning or service tuning?
e Periodically assess the progress of the failure rate utilizing the historic data trend view
to reduce failure count.

20

CLOUD=RA

Python

Spark/Yarn Alert Code

#Importing the Modules

from datetime import datetime, timedelta

import json

from airflow import DAG

from airflow.operators.python import PythonOperator

from airflow.providers.jdbc.operators.jdbc import JdbcOperator
from airflow.models.variable import Variable

from airflow.operators.email_operator import EmailOperator
from airflow.providers.jdbc.hooks.jdbc import JdbcHook
import pandas as pd

from email.mime.text import MIMEText

from email.mime.application import MIMEApplication

from email.mime.multipart import MIMEMultipart

from smtplib import SMTP

import smtplib

import sys

default_args = {
"owner': 'airflow',
"depends_on_past': False,
"email': ['job owner email address'],
"email_on_failure': True,
‘email_on_retry': False,
'retries': 1,
‘retry_delay': timedelta(minutes=2)

doc =
##Spark/Yarn dag to send an email to the Data engineering team informing about
the job failures that occurred in the last 24 hours.

#Initiating the Dag
JOB_ID = 'EDH_spark_jobs_monitoring'
dag = DAG(

dag_id=JOB_ID,
doc_md=doc,

21

CLOUD=RA

default_args=default_args,
description="EDH_spark_jobs_monitoring",
schedule_interval="06 */23 * * *"
start_date=datetime(2021, 1, 1),
tags=['EDH', 'Monitoring', 'failure jobs']
max_active_runs=1,

catchup=False

#Defining a callable function

def func(jdbc_conn_id, sql, **kwargs):
"""Print df from JDBC """
print(kwargs)
hook = JdbcHook(jdbc_conn_id=jdbc_conn_id)
df = hook.get_pandas_df(sql=sql, parameters=None)
print("printing the jobs details")
print(df.to_string())
recipients = ['recipient email address']
msg = MIMEMultipart()
msg['Subject'] = "Yarn/Spark Job Failures For DAY-1"
msg['From'] = 'sender email address'

html = """\

<html>
<head></head>
<body>

<pre>

Hello Team,

Below is the list of Spark/Yarn jobs that failed in the last 24 hours. Please
check on priority level.

Yarn UI - Pass the link to the Yarn UI for further troubleshooting
For more details on ERROR/Exception, please check the dashboard - <Link to the
visualization>

</pre>

{0}

<pre>

22

CLOUDZ=RA

Please reach out to the ops team in case of any queries.

Regards
OPS TEAM

</pre>
</body>
</html>

""" format(df.to_html())

partl = MIMEText(html, 'html")
msg.attach(part1)

server = smtplib.SMTP('SMTP Server Hostname', 25)
server.sendmail(msg['From'], 'recipient email address ' , msg.as_string())

#Creating a Task

run_this = PythonOperator (
task_id="'Job_owner_details',
python_callable=func,

op_kwargs={"'jdbc_conn_id": ‘dcoe_impala’, ‘sql': ‘select
username, application_name, queue, status, job_type, count(*) as count from
edhoperations.edh_spark_monitor where snapshottime = (select max(snapshottime)

from edhoperations.edh_spark_monitor) group by username, application_name,
queue, status, job_type HAVING COUNT(*) > ©;' },
dag=dag,

23

