Community Articles

Find and share helpful community-sourced technical articles.
Announcements
Celebrating as our community reaches 100,000 members! Thank you!
avatar
Contributor

Cloudera Data Engineering

CDE is the Cloudera Data Engineering Service, a containerized managed service for Cloudera Data Platform designed for Large Scale Batch Pipelines with Spark, Airflow and Iceberg. It allows you to submit batch jobs to auto-scaling virtual clusters. As a Cloud-Native service, CDE enables you to spend more time on your applications, and less time on infrastructure.

CDE allows you to create, manage, and schedule Apache Spark jobs without the overhead of creating and maintaining Spark clusters. With CDE, you define virtual clusters with a range of CPU and memory resources, and the cluster scales up and down as needed to run your Spark workloads, helping to control your cloud costs.

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client. You can use the CLI to create and update jobs, view job details, manage job resources, run jobs, and more.

Requirements

The following are required in order to reproduce these commands in your CDE environment:

  1. A CDE Service on version 1.19.0 or above.
  2. A working installation of the CDE CLI. Please follow these instructions to install the CLI.

Steps

Clone this git repository and run the following commands in the terminal with the CLI:

You can easily list all jobs and job runs.

% cde job list
% cde run list

However, that is often impossible if you have a large number of jobs/runs in your Virtual Cluster. Therefore, using filters can be very important.

Setup

Prior to running the filtering commands you must set up some jobs and related dependencies. Run the following commands in bulk. To learn more about these please visit this Cloudera Community Article.

% cde resource create --name myScripts \
--type files

% cde resource upload --name myScripts \
--local-path cde_jobs/spark_geospatial.py \
--local-path cde_jobs/utils.py

% cde resource describe --name myScripts

% cde resource create --name myData \
--type files

% cde resource upload-archive --name myData \
--local-path data/ne_50m_admin_0_countries_lakes.zip

cde credential create --name my-docker-creds \
--type docker-basic \
--docker-server hub.docker.com \

cde resource create --name dex-spark-runtime-sedona-geospatial \
--image pauldefusco/dex-spark-runtime-3.2.3-7.2.15.8:1.20.0-b15-sedona-geospatial-003 \
--image-engine spark3 \
--type custom-runtime-image

cde job create --name geospatialRdd \
--type spark \
--mount-1-prefix code/ --mount-1-resource myScripts \
--mount-2-prefix data/ --mount-2-resource myData \
--runtime-image-resource-name dex-spark-runtime-sedona-geospatial \
--packages org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2 \
--application-file code/spark_geospatial.py \
--arg myArg \
--max-executors 4 \
--min-executors 2 \
--executor-cores 2

cde job run --name geospatialRdd --executor-cores 4

Monitoring Examples

Now the monitoring examples:

Filter all jobs by name where name equals "geospatialRdd"

% cde job list --filter 'name[eq]geospatialRdd'
[
{
"name": "geospatialRdd",
"type": "spark",
"created": "2023-11-29T00:59:11Z",
"modified": "2023-11-29T00:59:11Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"dirPrefix": "data/",
"resourceName": "myData"
},
{
"dirPrefix": "code/",
"resourceName": "myScripts"
}
],
"spark": {
"file": "code/spark_geospatial.py",
"args": [
"myArg"
],
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 2,
"conf": {
"spark.dynamicAllocation.maxExecutors": "4",
"spark.dynamicAllocation.minExecutors": "2",
"spark.jars.packages": "org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2"
}
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
},
"runtimeImageResourceName": "dex-spark-runtime-sedona-geospatial"
}
]

You can nest filters. For example, filter all jobs where job application file equals "code/spark_geospatial.py":

% cde job list --filter 'spark.file[eq]code/spark_geospatial.py'
[
{
"name": "geospatialRdd",
"type": "spark",
"created": "2023-11-29T00:59:11Z",
"modified": "2023-11-29T00:59:11Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"dirPrefix": "data/",
"resourceName": "myData"
},
{
"dirPrefix": "code/",
"resourceName": "myScripts"
}
],
"spark": {
"file": "code/spark_geospatial.py",
"args": [
"myArg"
],
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 2,
"conf": {
"spark.dynamicAllocation.maxExecutors": "4",
"spark.dynamicAllocation.minExecutors": "2",
"spark.jars.packages": "org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2"
}
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
},
"runtimeImageResourceName": "dex-spark-runtime-sedona-geospatial"
}
]

You can use different operators. For example, search all jobs whose name contains "spark":

% cde job list --filter 'name[rlike]spark'
[
{
"name": "sparkxml",
"type": "spark",
"created": "2023-11-23T07:11:41Z",
"modified": "2023-11-23T07:39:32Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"dirPrefix": "/",
"resourceName": "files"
}
],
"spark": {
"file": "read_xml.py",
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 1,
"conf": {
"dex.safariEnabled": "false",
"spark.jars.packages": "com.databricks:spark-xml_2.12:0.16.0",
"spark.pyspark.python": "python3"
},
"logLevel": "INFO"
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
}
}
]

Search all jobs created on or after 11/23/23:

% cde job list --filter 'created[gte]2023-11-23'
API User Password: [
{
"name": "asdfsdfsdfsdf",
"type": "airflow",
"created": "2023-11-23T06:56:45Z",
"modified": "2023-11-23T06:56:45Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"resourceName": "PipelineResource-asdfsdfsdfsdf-1700722602468"
}
],
"airflow": {
"dagID": "asdfsdfsdfsdf",
"dagFile": "dag.py"
},
"schedule": {
"enabled": false,
"user": "dschoberle",
"start": "Thu, 23 Nov 2023 06:56:44 GMT",
"catchup": true
}
},
{
"name": "geospatialRdd",
"type": "spark",
"created": "2023-11-29T00:59:11Z",
"modified": "2023-11-29T00:59:11Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"dirPrefix": "data/",
"resourceName": "myData"
},
{
"dirPrefix": "code/",
"resourceName": "myScripts"
}
],
"spark": {
"file": "code/spark_geospatial.py",
"args": [
"myArg"
],
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 2,
"conf": {
"spark.dynamicAllocation.maxExecutors": "4",
"spark.dynamicAllocation.minExecutors": "2",
"spark.jars.packages": "org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2"
}
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
},
"runtimeImageResourceName": "dex-spark-runtime-sedona-geospatial"
}
]

Search all jobs with executorCores less than 2:

% cde job list --filter 'spark.executorCores[lt]2'
API User Password: [
{
"name": "CDEPY_SPARK_JOB",
"type": "spark",
"created": "2023-11-14T23:02:48Z",
"modified": "2023-11-14T23:02:48Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"resourceName": "CDEPY_DEMO"
}
],
"spark": {
"file": "pysparksql.py",
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "4g",
"executorCores": 1,
"conf": {
"spark.pyspark.python": "python3"
},
"logLevel": "INFO"
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
}
},
{
"name": "CDEPY_SPARK_JOB_APAC",
"type": "spark",
"created": "2023-11-15T03:33:36Z",
"modified": "2023-11-15T03:33:36Z",
"retentionPolicy": "keep_indefinitely",
"mounts": [
{
"resourceName": "CDEPY_DEMO_APAC"
}
],
"spark": {
"file": "pysparksql.py",
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "4g",
"executorCores": 1,
"conf": {
"spark.pyspark.python": "python3"
},
"logLevel": "INFO"
},
"schedule": {
"enabled": false,
"user": "pauldefusco"
}
},
]

List all runs for job "geospatialRdd":

% cde run list --filter 'job[eq]geospatialRdd'
[
{
"id": 21815,
"job": "geospatialRdd",
"type": "spark",
"status": "failed",
"user": "pauldefusco",
"started": "2023-11-29T00:32:02Z",
"ended": "2023-11-29T00:32:36Z",
"mounts": [
{
"dirPrefix": "data/",
"resourceName": "myData"
},
{
"dirPrefix": "code/",
"resourceName": "myScripts"
}
],
"runtimeImageResourceName": "dex-spark-runtime-sedona-geospatial",
"spark": {
"sparkAppID": "spark-f542530da24f485da4993338dca81d3c",
"sparkAppURL": "https://58kqsms2.cde-g6hpr9f8.go01-dem.ylcu-atmi.cloudera.site/hs/history/spark-f542530da24f485da4993338dca81d3c/jobs/",
"spec": {
"file": "code/geospatial_rdd.py",
"args": [
"myArg"
],
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 4,
"conf": {
"spark.dynamicAllocation.maxExecutors": "4",
"spark.dynamicAllocation.minExecutors": "2",
"spark.jars.packages": "org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2"
}
}
},
"identity": {
"disableRoleProxy": true,
"role": "instance"
}
},
{
"id": 21825,
"job": "geospatialRdd",
"type": "spark",
"status": "failed",
"user": "pauldefusco",
"started": "2023-11-29T00:48:29Z",
"ended": "2023-11-29T00:49:01Z",
"mounts": [
{
"dirPrefix": "data/",
"resourceName": "myData"
},
{
"dirPrefix": "code/",
"resourceName": "myScripts"
}
],
"runtimeImageResourceName": "dex-spark-runtime-sedona-geospatial",
"spark": {
"sparkAppID": "spark-e5460856fb3a459ba7ee2c748c802d07",
"sparkAppURL": "https://58kqsms2.cde-g6hpr9f8.go01-dem.ylcu-atmi.cloudera.site/hs/history/spark-e5460856fb3a459ba7ee2c748c802d07/jobs/",
"spec": {
"file": "myScripts/geospatial_rdd.py",
"args": [
"myArg"
],
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 2,
"conf": {
"spark.dynamicAllocation.maxExecutors": "4",
"spark.dynamicAllocation.minExecutors": "2",
"spark.jars.packages": "org.apache.sedona:sedona-spark-shaded-3.0_2.12:1.5.0,org.datasyslab:geotools-wrapper:1.5.0-28.2"
}
}
},
"identity": {
"disableRoleProxy": true,
"role": "instance"
}
}
]

You can combine multiple filters. Return all job runs from today (11/29/23) i.e. where the start date is greater than or equal to 11/29 and the end date is less than or equal to 11/30. Notice all times default to +00 UTC timezone.

% cde run list --filter 'started[gte]2023-11-29' --filter 'ended[lte]2023-11-30'
[
{
"id": 21907,
"job": "ge_data_quality-pauldefusco-banking",
"type": "spark",
"status": "succeeded",
"user": "pauldefusco",
"started": "2023-11-29T02:56:44Z",
"ended": "2023-11-29T02:57:46Z",
"mounts": [
{
"dirPrefix": "/",
"resourceName": "cde_demo_files-pauldefusco-banking"
}
],
"runtimeImageResourceName": "dex-spark-runtime-ge-data-quality-pauldefusco-banking",
"spark": {
"sparkAppID": "spark-8f9d7999056f4b53a01cc2afc5304cca",
"sparkAppURL": "https://58kqsms2.cde-g6hpr9f8.go01-dem.ylcu-atmi.cloudera.site/hs/history/spark-8f9d7999056f4b53a01cc2afc5304cca/jobs/",
"spec": {
"file": "ge_data_quality.py",
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 1
}
},
"identity": {
"disableRoleProxy": true,
"role": "instance"
}
},
{
"id": 21908,
"job": "data_quality_orchestration-pauldefusco-banking",
"type": "airflow",
"status": "running",
"user": "pauldefusco",
"started": "2023-11-29T03:00:01Z",
"ended": "0001-01-01T00:00:00Z",
"airflow": {
"dagID": "CDE_Demo_pauldefusco-banking",
"dagRunID": "scheduled__2023-11-29T02:55:00+00:00",
"dagFile": "airflow.py",
"executionDate": "2023-11-29T02:55:00Z"
}
},
{
"id": 21909,
"job": "batch_load-pauldefusco-banking",
"type": "spark",
"status": "running",
"user": "pauldefusco",
"started": "2023-11-29T03:00:14Z",
"ended": "0001-01-01T00:00:00Z",
"mounts": [
{
"dirPrefix": "jobCode/",
"resourceName": "cde_demo_files-pauldefusco-banking"
}
],
"runtimeImageResourceName": "dex-spark-runtime-ge-data-quality-pauldefusco-banking",
"spark": {
"sparkAppID": "spark-3d8a4704418841929d325af0e0190a20",
"sparkAppURL": "https://58kqsms2.cde-g6hpr9f8.go01-dem.ylcu-atmi.cloudera.site/livy-batch-14907-dyL7LLeM",
"spec": {
"file": "jobCode/batch_load.py",
"driverMemory": "1g",
"driverCores": 1,
"executorMemory": "1g",
"executorCores": 1
}
},
"identity": {
"disableRoleProxy": true,
"role": "instance"
}
}
]

List all successful airflow jobs created by user pauldefusco that started after 3 am UTC on 11/29/23:

% cde run list --filter 'type[eq]airflow' --filter 'status[eq]succeeded' --filter 'user[eq]pauldefusco' --filter 'started[gte]2023-11-29T03'
[
{
"id": 21908,
"job": "data_quality_orchestration-pauldefusco-banking",
"type": "airflow",
"status": "succeeded",
"user": "pauldefusco",
"started": "2023-11-29T03:00:01Z",
"ended": "2023-11-29T03:03:01Z",
"airflow": {
"dagID": "CDE_Demo_pauldefusco-banking",
"dagRunID": "scheduled__2023-11-29T02:55:00+00:00",
"dagFile": "airflow.py",
"executionDate": "2023-11-29T02:55:00Z"
}
}
]

List all CDE Resources will return all types ("python-env", "files", "custom-runtime-image"):

% cde resource list
[
{
"name": "BankingPyEnv",
"type": "python-env",
"status": "pending-build",
"created": "2023-11-07T21:27:16Z",
"modified": "2023-11-07T21:27:16Z",
"retentionPolicy": "keep_indefinitely",
"pythonEnv": {
"pythonVersion": "python3",
"type": "python-env"
}
},
{
"name": "CDEPY_DEMO_APAC",
"type": "files",
"status": "ready",
"signature": "5d216f3c4a10578ffadba415b13022d9e383bc22",
"created": "2023-11-15T03:33:36Z",
"modified": "2023-11-15T03:33:36Z",
"retentionPolicy": "keep_indefinitely"
},
{
"name": "dex-spark-runtime-sedona-geospatial",
"type": "custom-runtime-image",
"status": "ready",
"created": "2023-11-28T23:51:11Z",
"modified": "2023-11-28T23:51:11Z",
"retentionPolicy": "keep_indefinitely",
"customRuntimeImage": {
"engine": "spark3",
"image": "pauldefusco/dex-spark-runtime-3.2.3-7.2.15.8:1.20.0-b15-sedona-geospatial-003"
}
}
]

List all CDE Resources named "myScripts":

% cde resource list --filter 'name[eq]myScripts'
[
{
"name": "myScripts",
"type": "files",
"status": "ready",
"signature": "17f820aacdad9bbd17a24d78a5b93cd0ec9e467b",
"created": "2023-11-28T23:31:31Z",
"modified": "2023-11-29T01:48:12Z",
"retentionPolicy": "keep_indefinitely"
}
]

List all CDE Resources of type Python Environment:

% cde resource list --filter 'type[eq]python-env'
[
{
"name": "BankingPyEnv",
"type": "python-env",
"status": "pending-build",
"created": "2023-11-07T21:27:16Z",
"modified": "2023-11-07T21:27:16Z",
"retentionPolicy": "keep_indefinitely",
"pythonEnv": {
"pythonVersion": "python3",
"type": "python-env"
}
}
]

Summary and Next Steps

Cloudera Data Engineering (CDE) provides a command line interface (CLI) client. You can use the CLI to create and update jobs, view job details, manage job resources, run jobs, and so on.

In this article we have reviewed some advanced use cases for the CLI. If you are using the CDE CLI you might also find the following articles and demos interesting:

210 Views
0 Kudos
Version history
Last update:
‎11-29-2023 04:52 PM
Updated by:
Contributors