Community Articles

Find and share helpful community-sourced technical articles.
Labels (2)
Super Guru

Below is a short Scala program and SBT build script to generate a Spark application to submit to YARN that will run on the HDP Sandbox with Spark 1.6.

We consume KAFKA messages in microbatches of 2 seconds. We set a number of parameters for performance of the SparkSQL write to HDFS including enabling Tungsten, using Snappy compression, Backpressure and the KryoSerializer.

We setup the Spark Context and the Spark Streaming Context, then use the KafkaUtils to prepare a Stream of generic Avro data records from a byte array. From there we then convert to a Scala Case Class that models the Twitter tweet from our source. We convert to a DataFrame, register it as a Temp Table and then save to ORC File, AVRO, Parquet and JSON.

To Build this Application:

sbt clean assembly

Create Kafka Topic

cd /usr/hdp/current/kafka-broker
bin/ --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic meetup

To Prepare Hadoop Environment

# Create HDFS Directories (also avro, orc, json, ... )
hdfs dfs -mkdir /parquetresults
hdfs dfs -chmod -R 777 /parquetresults
hdfs dfs -ls /

To Deploy to YARN

# Check YARN
yarn application --list

# If need be
# yarn application --kill <id from list>

spark-submit --class "com.sparkdeveloper.receiver.KafkaConsumer" \
           --master yarn --deploy-mode client --driver-memory 512m --executor-memory 512m --conf spark.ui.port=4244 kafkaconsumer.jar

Spark Scala Program

package com.sparkdeveloper.receiver

import java.util.HashMap
import org.apache.avro.SchemaBuilder
import org.apache.avro.specific.SpecificDatumWriter
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.serializer.KryoSerializer
import kafka.serializer._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import{ByteArrayOutputStream, File, IOException}
import org.apache.spark.streaming.{Seconds, StreamingContext, Time}
import org.apache.avro.file.{DataFileReader, DataFileWriter}
import org.apache.avro.generic.{GenericDatumReader, GenericDatumWriter, GenericRecord, GenericRecordBuilder}
import org.apache.avro.SchemaBuilder
import org.apache.avro.Schema
import org.apache.avro._
import org.apache.spark.sql.SQLContext
import org.apache.spark.streaming.kafka._
import org.apache.spark.rdd.RDD
import com.databricks.spark.avro._
import com.fasterxml.jackson.module.scala.DefaultScalaModule
import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper
import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.databind.DeserializationFeature

case class HashtagEntities(text: String, start: Double, end: Double)

case class User(id: Double, name: String,
                screenName: String, location: String, description: String, url: String, statusesCount: Double)

case class Tweet(text: String, createdAt: String, lang: String, source: String, expandedURL: String,
                 url: String, screenName: String, description: String, name: String, retweetCount: Double, timestamp: Long,
                 favoriteCount: Double, user: Option[User], hashtags: HashtagEntities)

  * Created by timothyspann
object KafkaConsumer {
  val tweetSchema = SchemaBuilder

  def main(args: Array[String]) {

    val logger: Logger = Logger.getLogger("com.sparkdeveloper.receiver.KafkaConsumer")
    val sparkConf = new SparkConf().setAppName("Avro to Kafka Consumer")

    sparkConf.set("spark.cores.max", "24") // For my sandbox
    sparkConf.set("spark.serializer", classOf[KryoSerializer].getName)
    sparkConf.set("spark.sql.tungsten.enabled", "true")
    sparkConf.set("spark.eventLog.enabled", "true")
    sparkConf.set("", "KafkaConsumer") // want to know your app in the UI
    sparkConf.set("", "snappy")
    sparkConf.set("spark.rdd.compress", "true")
    sparkConf.set("spark.streaming.backpressure.enabled", "true")

    sparkConf.set("spark.sql.parquet.compression.codec", "snappy")
    sparkConf.set("spark.sql.parquet.mergeSchema", "true")
    sparkConf.set("spark.sql.parquet.binaryAsString", "true")

    val sc = new SparkContext(sparkConf)
    sc.hadoopConfiguration.set("parquet.enable.summary-metadata", "false")
    val ssc = new StreamingContext(sc, Seconds(2))

    try {
      val kafkaConf = Map(
        "" -> "",
        "zookeeper.connect" -> "", // Default zookeeper location
        "" -> "KafkaConsumer",
        "" -> "1000")

      val topicMaps = Map("meetup" -> 1)

      // Create a new stream which can decode byte arrays.
      val tweets = KafkaUtils.createStream[String, Array[Byte], DefaultDecoder, DefaultDecoder]
(ssc, kafkaConf,topicMaps, StorageLevel.MEMORY_ONLY_SER)

      try {
        tweets.foreachRDD((rdd, time) => {
          if (rdd != null) {
            try {
              val sqlContext = new SQLContext(sc)
              import sqlContext.implicits._

              val rdd2 = { case (k, v) => parseAVROToString(v) }

              try {
                val result = rdd2.mapPartitions(records => {
                  val mapper = new ObjectMapper()
                  mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false)
                  records.flatMap(record => {
                    try {
                      Some(mapper.readValue(record, classOf[Tweet]))
                    } catch {
                      case e: Exception => None;
                }, true)

                val df1 = result.toDF()
                logger.error("Registered tweets: " + df1.count())
		// To show how easy it is to write multiple formats
              } catch {
                case e: Exception => None;
            catch {
              case e: Exception => None;
      } catch {
        case e: Exception =>
          println("Writing files after job. Exception:" + e.getMessage);
    } catch {
      case e: Exception =>
        println("Kafka Stream. Writing files after job. Exception:" + e.getMessage);

  def parseAVROToString(rawTweet: Array[Byte]): String = {
    try {
      if (rawTweet.isEmpty) {
        println("Rejected Tweet")
      else {
    } catch {
      case e: Exception =>
        println("Exception:" + e.getMessage);

  def deserializeTwitter(tweet: Array[Byte]): GenericRecord = {
    try {
      val reader = new GenericDatumReader[GenericRecord](tweetSchema)
      val decoder = DecoderFactory.get.binaryDecoder(tweet, null), decoder)
    } catch {
        case e: Exception => None;
// scalastyle:on println


name := "KafkaConsumer"
version := "1.0"
scalaVersion := "2.10.6"
jarName in assembly := "kafkaconsumer.jar"
libraryDependencies  += "org.apache.spark" % "spark-core_2.10" % "1.6.0" % "provided"
libraryDependencies  += "org.apache.spark" % "spark-sql_2.10" % "1.6.0" % "provided"
libraryDependencies  += "org.apache.spark" % "spark-streaming_2.10" % "1.6.0" % "provided"
libraryDependencies  += "com.databricks" %% "spark-avro" % "2.0.1"
libraryDependencies  += "org.apache.avro" % "avro" % "1.7.6" % "provided"
libraryDependencies  += "org.apache.spark" % "spark-streaming-kafka_2.10" % "1.6.0"
libraryDependencies  += "org.codehaus.jackson" % "jackson-mapper-asl" % "1.9.13"
libraryDependencies  += "" % "gson" % "2.3"

mergeStrategy in assembly := {
  case m if m.toLowerCase.endsWith("")          => MergeStrategy.discard
  case m if m.toLowerCase.matches("meta-inf.*\\.sf$")      => MergeStrategy.discard
  case ""                                  => MergeStrategy.discard
  case m if m.toLowerCase.startsWith("meta-inf/services/") => MergeStrategy.filterDistinctLines
  case "reference.conf"                                    => MergeStrategy.concat
  case _                                                  => MergeStrategy.first


Thanks Timothy for this great article

Are you aware of any method to go directly from the RDD of KafkaAvroDecoder output objects to a Spark Dataframe or Dataset specifying an Avro read schema?


It looks like you have to wait for Spark 2.0 with structured streaming


i'm writing code on zepplin, could you please tell how can I see the output or the final string that has been converted from my AVRO message?? Also,I am not able to see file in any format in my hdfs, what is the location where df1 is stored?

thanks a lot for this code!!!!

where are these dataframes saved!!

once you do a write (df1.write.format("orc").mode(org.) it will save it to an HDFS or local directory depending if you have hadoop enabled. it will create it under the running user like /root/<your name> or under a spark user directory if that was created. it doesn't hurt to put in a full path for the write like /mystuff/awesome.

To read an AVRO file, use the avro tools see here:

put in a full path, for me running in hadoop it is saved to HDFS, see below.

if you are running standalone not compiled with hadoop, it will store to a local file system, probably /<YOURCURRENTUSER>/something or /tmp check the spark history UI

Hi Timothy thanks for this detailed article , we have a avro schema which is very long (116 lines) so using schema builder to build the entire schema may not be best option in our case, Could you please guide us on how can i approach this our aim is to read avro messages from kafka and convert them to json and write to a datasource also i posted the question for the same

Thanks for the very useful article. I am getting the below when trying to compile.

constructor cannot be instantiated to expected type; found : (T1, T2) required: org.apache.kafka.clients.consumer.ConsumerRecord[String,Array[Byte]] [ERROR] val rdd2 = { case (k, v) => parseAVROToString(v) }

Did anybody face this issue? Thanks.

Take a Tour of the Community
Don't have an account?
Your experience may be limited. Sign in to explore more.
Version history
Last update:
‎05-13-2016 07:50 PM
Updated by:
Top Kudoed Authors