Support Questions
Find answers, ask questions, and share your expertise
Announcements
Alert: Welcome to the Unified Cloudera Community. Former HCC members be sure to read and learn how to activate your account here.

Could not parse Master URL: 'yarn'

SOLVED Go to solution
Highlighted

Could not parse Master URL: 'yarn'

Expert Contributor

I use IntelliJ IDE installed on my Windows 10 laptop and try to run spark job in yarn mode on my 5 node HDP 3.1.1 cluster.

My codes:

package p1
import org.apache.spark.sql.{SparkSession, functions => F}
import org.apache.log4j.{Logger, Level}
object SparkDeneme extends App {
  Logger.getLogger("org").setLevel(Level.INFO)

  val spark = SparkSession.builder()
    .appName("SparkDeneme")
    .master("yarn")
    .config("spark.hadoop.fs.defaultFS","hdfs://node1.impektra.com:8020")
   .config("spark.hadoop.yarn.resoursemanager.address","node1.impektra.com:8030")
    .getOrCreate()
}

  import spark.implicits._
  val sc = spark.sparkContext


  val dfFromList = sc.parallelize(List(1,2,3,4,5,6)).toDF("rakamlar")
  // dfFromList.printSchema()

   dfFromList.show()

When I run get following error:

19/07/26 20:00:32 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Could not parse Master URL: 'yarn'
    at org.apache.spark.SparkContext$.org$apache$spark$SparkContext$$createTaskScheduler(SparkContext.scala:2744)
    at org.apache.spark.SparkContext.<init>(SparkContext.scala:492)
    at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:933)
    at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:924)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:924)
    at p1.SparkDeneme$.delayedEndpoint$p1$SparkDeneme$1(SparkDeneme.scala:17)
    at p1.SparkDeneme$delayedInit$body.apply(SparkDeneme.scala:8)
    at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
    at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
    at scala.App$$anonfun$main$1.apply(App.scala:76)
    at scala.App$$anonfun$main$1.apply(App.scala:76)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
    at scala.App$class.main(App.scala:76)
    at p1.SparkDeneme$.main(SparkDeneme.scala:8)
    at p1.SparkDeneme.main(SparkDeneme.scala)

I tried to get help from this tutorial

Anyone who has succeeded to run Spark YARN mode in IntelliJ?

1 ACCEPTED SOLUTION

Accepted Solutions

Re: Could not parse Master URL: 'yarn'

Super Guru

@Erkan ŞİRİN

Did you try using yarn-client (or) yarn-client instead of yarn in .master.

If error still exists then add spark-yarn.jar to the build path, then try to submit the job again.

Refer to this link for more details about similar issue.

4 REPLIES 4

Re: Could not parse Master URL: 'yarn'

Super Guru

@Erkan ŞİRİN

Did you try using yarn-client (or) yarn-client instead of yarn in .master.

If error still exists then add spark-yarn.jar to the build path, then try to submit the job again.

Refer to this link for more details about similar issue.

Re: Could not parse Master URL: 'yarn'

Expert Contributor

Hi @Shu I tried yarn-client and spark-yarn.jar But it can't pass the Could not parse Master URL: 'yarn' ERROR

Re: Could not parse Master URL: 'yarn'

Super Guru

@Erkan ŞİRİN,

Try specifying defaultFS,resourcemanager address

val spark = SparkSession.builder().master("yarn")
            .config("spark.hadoop.fs.defaultFS","<name_node_address>")
            .config("spark.hadoop.yarn.resourcemanager.address","<resourcemanager_address>")
            .app_name("<job_name>")
            .enableHiveSupport()
            .getOrCreate()

and then add spark-yarn_x.x.jar to maven repository and try to run again.


Re: Could not parse Master URL: 'yarn'

Expert Contributor

Hi @Shu thank you. Adding spark-yarn_x.x.jar to maven repository solved the problem. But I have come across other errors. Anyway in here the problem was parsing the yarn and it is solved.