Support Questions
Find answers, ask questions, and share your expertise

MapReduce: 0 records written from Reducer

Solved Go to solution

MapReduce: 0 records written from Reducer

Explorer

Hi,

I am executing the below MapReduce program for KeyValueTextInputFormat and get 0 records from reducer. Could you help to identify the reasons.

urlcount.txt urlcountm.txt urlcountr.txt Data: http://url12.com 36 http://url11.com 4 http://url20.com 36 http://url1.com 256 http://url1.com 267

Thanks in advance!!!

1 ACCEPTED SOLUTION

Accepted Solutions

Re: MapReduce: 0 records written from Reducer

Mentor

@Revathy Mourouguessane

excellent question, it's been a while since I'd touched MR and learned something new (KeyValueTextInputFormat). So firstly, assuming your data looks like this

http://url12.com 36
http://url11.com 4
http://url20.com 36
http://url1.com 256
http://url1.com 267

KeyValueInputFormat class states the following

An InputFormat for plain text files. Files are broken into lines. Either linefeed or carriage-return are used to signal end of line. Each line is divided into key and value parts by a separator byte. If no such a byte exists, the key will be the entire line and value will be empty.

You did not specify a separator in your job configuration. I made a few changes to your code

package com.hortonworks.mapreduce;

/**
 *
 * @author aervits
 */
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class URLCount extends Configured implements Tool {

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new URLCount(), args);
        System.exit(res);
    }

    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = this.getConf();
        conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");
        Job job = Job.getInstance(conf, "URLCount");
        job.setJarByClass(getClass());
        job.setInputFormatClass(KeyValueTextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setMapperClass(URLCountM.class);
        job.setReducerClass(URLCountR.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        return (job.waitForCompletion(true) == true ? 0 : -1);
    }
}

notice in your tool runner, you don't terminate the job with expected result, then in your run method, I added setOutputKeyClass, setOutputValueClass, setMapOutputKeyClass and setMapOutputValueClass, I also set separator config, changed LongWritable to IntWritable. What does that mean? Well, not setting the separator means KeyValueTextInputFormat will treat the whole line as string and you don't receive any Value from Mapper function. So you'd think you're not getting results from reducer but in reality you weren't passing anything from mapper to reducer in the first place. Moving on,

package com.hortonworks.mapreduce;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

/**
 *
 * @author aervits
 */
public class URLCountM extends Mapper<Text, Text,Text, IntWritable> {
    private static final Logger LOG = Logger.getLogger(URLCountM.class.getName());
   
 public final IntWritable iw = new IntWritable();
 
        @Override
 public void map(Text key, Text value, Context context){  
  try{
                    LOG.log(Level.INFO, "MAP_KEY: ".concat(key.toString()).concat(" MAP_VALUE: ".concat(value.toString())));
  context.write(key, new IntWritable(Integer.valueOf(value.toString())));
  }
  catch(NumberFormatException | IOException | InterruptedException e){
   LOG.log(Level.SEVERE, "ERROR: ".concat(e.toString()));
  }
 }
}

notice I added logger, this is a better way of printing out to log expected keys and values

package com.hortonworks.mapreduce;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 *
 * @author aervits
 */
public class URLCountR extends Reducer<Text, IntWritable, Text, IntWritable> {

    private static final Logger LOG = Logger.getLogger(URLCountR.class.getName());
    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values, Context context
    ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        LOG.log(Level.INFO, "REDUCER_VALUE: ".concat(result.toString()));
        context.write(key, result);
    }
}

notice I'm printing to log again in reducer, just to keep sanity, below is what it looks like in the logs.

2436-mapper.png

2434-reducer.png

finally the result looks like so

http://url1.com 523
http://url11.com        4
http://url12.com        36
http://url20.com        36

finally, I published the code to my repo, grab it if you need a working example, I compiled it with HDP specific versions of Hadoop. Using our repositories vs Apache is recommended. Take a look at my pom.xml.

https://github.com/dbist/URLCount

One final hint would be to look at the statistics being printed out after job completes. I realized you were not sending data to Reducer when I ran your code and saw 0 records from mapper. This is what it should look like having only 5 lines of input data.

Map-Reduce Framework
  Map input records=5
  Map output records=5
  Map output bytes=103

mapper.png

View solution in original post

4 REPLIES 4

Re: MapReduce: 0 records written from Reducer

These questions are always almost impossible to answer.

I would add a couple System.outs to your mapper and reducer to see if data goes in or out. You can then see these messages in the Resourcemanager UI ( port 8088 ) -> Click on your task, click through attempt->Mapper and reducer -> then logs.

Re: MapReduce: 0 records written from Reducer

Mentor

@Revathy Mourouguessane

Maybe I would  also suggest that you print out line after that command to see if it is generating the expected output!.

Re: MapReduce: 0 records written from Reducer

Mentor

@Revathy Mourouguessane

excellent question, it's been a while since I'd touched MR and learned something new (KeyValueTextInputFormat). So firstly, assuming your data looks like this

http://url12.com 36
http://url11.com 4
http://url20.com 36
http://url1.com 256
http://url1.com 267

KeyValueInputFormat class states the following

An InputFormat for plain text files. Files are broken into lines. Either linefeed or carriage-return are used to signal end of line. Each line is divided into key and value parts by a separator byte. If no such a byte exists, the key will be the entire line and value will be empty.

You did not specify a separator in your job configuration. I made a few changes to your code

package com.hortonworks.mapreduce;

/**
 *
 * @author aervits
 */
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class URLCount extends Configured implements Tool {

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new URLCount(), args);
        System.exit(res);
    }

    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = this.getConf();
        conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");
        Job job = Job.getInstance(conf, "URLCount");
        job.setJarByClass(getClass());
        job.setInputFormatClass(KeyValueTextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setMapperClass(URLCountM.class);
        job.setReducerClass(URLCountR.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        return (job.waitForCompletion(true) == true ? 0 : -1);
    }
}

notice in your tool runner, you don't terminate the job with expected result, then in your run method, I added setOutputKeyClass, setOutputValueClass, setMapOutputKeyClass and setMapOutputValueClass, I also set separator config, changed LongWritable to IntWritable. What does that mean? Well, not setting the separator means KeyValueTextInputFormat will treat the whole line as string and you don't receive any Value from Mapper function. So you'd think you're not getting results from reducer but in reality you weren't passing anything from mapper to reducer in the first place. Moving on,

package com.hortonworks.mapreduce;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;

/**
 *
 * @author aervits
 */
public class URLCountM extends Mapper<Text, Text,Text, IntWritable> {
    private static final Logger LOG = Logger.getLogger(URLCountM.class.getName());
   
 public final IntWritable iw = new IntWritable();
 
        @Override
 public void map(Text key, Text value, Context context){  
  try{
                    LOG.log(Level.INFO, "MAP_KEY: ".concat(key.toString()).concat(" MAP_VALUE: ".concat(value.toString())));
  context.write(key, new IntWritable(Integer.valueOf(value.toString())));
  }
  catch(NumberFormatException | IOException | InterruptedException e){
   LOG.log(Level.SEVERE, "ERROR: ".concat(e.toString()));
  }
 }
}

notice I added logger, this is a better way of printing out to log expected keys and values

package com.hortonworks.mapreduce;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 *
 * @author aervits
 */
public class URLCountR extends Reducer<Text, IntWritable, Text, IntWritable> {

    private static final Logger LOG = Logger.getLogger(URLCountR.class.getName());
    private IntWritable result = new IntWritable();

    @Override
    public void reduce(Text key, Iterable<IntWritable> values, Context context
    ) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        LOG.log(Level.INFO, "REDUCER_VALUE: ".concat(result.toString()));
        context.write(key, result);
    }
}

notice I'm printing to log again in reducer, just to keep sanity, below is what it looks like in the logs.

2436-mapper.png

2434-reducer.png

finally the result looks like so

http://url1.com 523
http://url11.com        4
http://url12.com        36
http://url20.com        36

finally, I published the code to my repo, grab it if you need a working example, I compiled it with HDP specific versions of Hadoop. Using our repositories vs Apache is recommended. Take a look at my pom.xml.

https://github.com/dbist/URLCount

One final hint would be to look at the statistics being printed out after job completes. I realized you were not sending data to Reducer when I ran your code and saw 0 records from mapper. This is what it should look like having only 5 lines of input data.

Map-Reduce Framework
  Map input records=5
  Map output records=5
  Map output bytes=103

mapper.png

View solution in original post

Re: MapReduce: 0 records written from Reducer

Explorer

Thank you!!!

I am happy to join this network for the level of support being provided. It keeps me motivated!!!