Created on 03-17-2017 08:35 AM - edited 09-16-2022 04:16 AM
Hi all
We have Spark 2.0 (*) installed from the Cloudera parcel on our cluster (CDH 5.9.0).
When running a quite simple App which just reads in some csv files and does a groupBy I always receive errors.
The App is submitted with:
spark2-submit --class my_class myapp-1.0-SNAPSHOT.jar
And I receive the following error message:
java.io.InvalidClassException: org.apache.commons.lang3.time.FastDateFormat; local class incompatible: stream classdesc serialVersionUID = 2, local class serialVersionUID = 1
I figured out that there are multiple versions of lang3 installed with the Cloudera release and modified the spark2-submit to:
spark2-submit --conf spark.driver.userClassPathFirst=true --conf spark.executor.userClassPathFirst=true --jars /var/opt/teradata/cloudera/parcels/CDH/jars/commons-lang3-3.3.2.jar --class my_class myapp-1.0-SNAPSHOT.jar
This way I cloud get rid of the first error message, but now I get:
java.lang.ClassCastException: cannot assign instance of org.apache.commons.lang3.time.FastDateFormat to field org.apache.spark.sql.execution.datasources.csv.CSVOptions.dateFormat of type org.apache.commons.lang3.time.FastDateFormat in instance of org.apache.spark.sql.execution.datasources.csv.CSVOptions
The App was written in Scala and compiled using Maven. The source code (**) and the maven pom file (***) are attached at the bottom of this post.
Does anybody have an idea on solving this issue?
Any help is highly appreciated!
Thanks a lot in advance!
Kind Regards
(*)
$spark2-submit --version
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.0.0.cloudera1
/_/
Branch HEAD
Compiled by user jenkins on 2016-12-06T18:34:13Z
Revision 2389f44e0185f33969d782ed09b41ae45fe30324(**)
import org.apache.spark.sql.SparkSession
object my_class {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("myapp")
.getOrCreate()
val csv = spark.read.option("header", value = false).csv("/path/to/folder/with/some/csv/files/")
val pivot = csv.groupBy("_c0").count()
csv.take(10).foreach(println)
pivot.take(10).foreach(println)
spark.stop()
}
}(***)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>de.lht.datalab.ingestion</groupId>
<artifactId>myapp</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<scala.version.base>2.11</scala.version.base>
<scala.version>${scala.version.base}.8</scala.version>
<spark.version>2.0.0.cloudera1</spark.version>
</properties>
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version.base}</artifactId>
<version>${spark.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Created 03-18-2017 03:23 AM
This is due to a difference in the version of commons-lang3 you use and the one Spark does, generally. See https://issues.apache.org/jira/browse/ZEPPELIN-1977 for example.
I believe you'll find that it's resolved in the latest Spark 2 release for CDH.
http://community.cloudera.com/t5/Community-News-Release/ANNOUNCE-Spark-2-0-Release-2/m-p/51464#M161
Created 03-18-2017 03:23 AM
This is due to a difference in the version of commons-lang3 you use and the one Spark does, generally. See https://issues.apache.org/jira/browse/ZEPPELIN-1977 for example.
I believe you'll find that it's resolved in the latest Spark 2 release for CDH.
http://community.cloudera.com/t5/Community-News-Release/ANNOUNCE-Spark-2-0-Release-2/m-p/51464#M161
Created 03-20-2017 06:33 AM
Thanks a lot.
With the given workaround at the end of the Zeppelin issue, it works for me now.
Created 04-08-2017 12:07 PM
What is the solution? (I do not have an enterprise account and we may not be able to upgrade the cluster soon enough).
Created on 08-23-2021 06:07 PM - edited 08-23-2021 06:31 PM
I am using Spark 2.4.0 CDH 6.3.4. I got the issue of java.lang.ClassCastException: cannot assign instance of org.apache.commons.lang3.time.FastDateFormat to field org.apache.spark.sql.catalyst.csv.CSVOptions.dateFormat of type org.apache.commons.lang3.time.FastDateFormat in instance of org.apache.spark.sql.catalyst.csv.CSVOptions
Caused by: java.lang.ClassCastException: cannot assign instance of org.apache.commons.lang3.time.FastDateFormat to field org.apache.spark.sql.catalyst.csv.CSVOptions.dateFormat of type org.apache.commons.lang3.time.FastDateFormat in instance of org.apache.spark.sql.catalyst.csv.CSVOptions
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2301)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1431)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2371)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2289)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2147)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1646)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2365)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2289)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2147)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1646)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2365)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2289)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2147)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1646)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2365)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2289)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2147)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1646)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2365)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2289)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2147)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1646)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:482)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:440)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:83)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Finally I able to resolve the issue. I was using org.apache.spark:spark-core_2.11:jar:2.4.0-cdh6.3.4:provided. Even though it is mentioned as provided, but it includes some of the transitive dependencies as scope compile. org.apache.commons:commons-lang3:jar:3.7 is one of those. If you provide commons-lang3 from outside it will create the problem as it gets packaged inside your fat jar.
Therefore I forced few of the jars scope as provided explicitly as listed below.
By doing this application is forced to use the commons-lang3 jar provided by the platform.
Pom snippet to solve the issue
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.core.version}</version>
<scope>provided</scope>
</dependency>
<!-- Declaring following dependencies explicitly as provided as they are not declared as provide as part of spark-core -->
<!-- Start -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.7</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>3.4.5-cdh6.3.4</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>3.1.5</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.9.10.6</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-crypto</artifactId>
<version>1.0.0</version>
<scope>provided</scope>
</dependency>
<!-- End -->