Support Questions

Find answers, ask questions, and share your expertise

Spark Sql error : Unable to acquire 1048576 bytes of memory

Explorer

Below is the stacktrace for error. Please suggest.

Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1824) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1850) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215) at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207) at org.apache.spark.sql.hive.HiveContext$QueryExecution.stringResult(HiveContext.scala:591) at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:63) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:308) at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:226) at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:685) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.io.IOException: Unable to acquire 1048576 bytes of memory at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPage(UnsafeExternalSorter.java:351) at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.<init>(UnsafeExternalSorter.java:138) at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.create(UnsafeExternalSorter.java:106) at org.apache.spark.sql.execution.UnsafeExternalRowSorter.<init>(UnsafeExternalRowSorter.java:68) at org.apache.spark.sql.execution.TungstenSort.org$apache$spark$sql$execution$TungstenSort$$preparePartition$1(sort.scala:146) at org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$3.apply(sort.scala:169) at org.apache.spark.sql.execution.TungstenSort$$anonfun$doExecute$3.apply(sort.scala:169) at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.prepare(MapPartitionsWithPreparationRDD.scala:50) at org.apache.spark.rdd.ZippedPartitionsBaseRDD$$anonfun$tryPrepareParents$1.applyOrElse(ZippedPartitionsRDD.scala:83) at org.apache.spark.rdd.ZippedPartitionsBaseRDD$$anonfun$tryPrepareParents$1.applyOrElse(ZippedPartitionsRDD.scala:82) at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33) at scala.collection.TraversableLike$$anonfun$collect$1.apply(TraversableLike.scala:278) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.TraversableLike$class.collect(TraversableLike.scala:278) at scala.collection.AbstractTraversable.collect(Traversable.scala:105) at org.apache.spark.rdd.ZippedPartitionsBaseRDD.tryPrepareParents(ZippedPartitionsRDD.scala:82) at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:97) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:63) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300) at org.apache.spark.rdd.RDD.iterator(RDD.scala:264) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:88) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745)

1 ACCEPTED SOLUTION

Explorer

Thanks @Brandon Wilson, I got it to work by increasing the driver memory. in my case.

View solution in original post

2 REPLIES 2

Hi @Bharat Rathi,

I am not sure what version of Spark you are using but this sounds a lot like SPARK-10309 (a known issue in Spark 1.5). Notice that this is specifically related to Tungsten. You can try disabling Tungsten as sugested by Jit Ken Tan in the JIRA by the following:

sqlContext.setConf("spark.sql.tungsten.enabled", "false")

Explorer

Thanks @Brandon Wilson, I got it to work by increasing the driver memory. in my case.