Created 09-07-2016 03:24 PM
We are using HDP 2.3.4. I also followed the instructions below.
Here is the callstack:
16/09/06 15:20:35 WARN Hive: Failed to access metastore. This class should not accessed in runtime. org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.ql.metadata.Hive.getAllDatabases(Hive.java:1236) at org.apache.hadoop.hive.ql.metadata.Hive.reloadFunctions(Hive.java:174) at org.apache.hadoop.hive.ql.metadata.Hive.<clinit>(Hive.java:166) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503) at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:193) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at org.apache.spark.sql.hive.client.IsolatedClientLoader.liftedTree1$1(IsolatedClientLoader.scala:183) at org.apache.spark.sql.hive.client.IsolatedClientLoader.<init>(IsolatedClientLoader.scala:179) at org.apache.spark.sql.hive.HiveContext.metadataHive$lzycompute(HiveContext.scala:228) at org.apache.spark.sql.hive.HiveContext.metadataHive(HiveContext.scala:187) at org.apache.spark.sql.hive.HiveContext.setConf(HiveContext.scala:394) at org.apache.spark.sql.hive.HiveContext.defaultOverrides(HiveContext.scala:176) at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:179) at com.cbt.ingest.tsz.TSZIngestApp$delayedInit$body.apply(TSZIngestApp.scala:50) at scala.Function0$class.apply$mcV$sp(Function0.scala:40) at scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12) at scala.App$anonfun$main$1.apply(App.scala:71) at scala.App$anonfun$main$1.apply(App.scala:71) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:32)
Created 09-07-2016 09:52 PM
The problem is resolved by using SQLContext in spark application code. Thanks for quick response.
Created 09-09-2016 04:30 PM
I think there is a definitely a clash of versions. The reflection error below indicates a mismatch of versions when the client is creating a session:
more Caused by: java.lang.NoSuchMethodError: org.apache.hadoop.util.StringUtils.toUpperCase(Ljava/lang/String;)Ljava/lang/String; at org.apache.hadoop.security.SaslPropertiesResolver.setConf(SaslPropertiesResolver.java:69) at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:73) at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133) at org.apache.hadoop.security.SaslPropertiesResolver.getInstance(SaslPropertiesResolver.java:58) ... 54 more 16/09/07 14:21:36 INFO metastore: Trying to connect to metastore with URI thrift://xxxxxxxxxxxxxxxxxxx:9083 Exception in thread "main"
Check the contents of the jars to make sure they are all compatible. For example what is the contents of target/YOUR_JAR-1.0.0-SNAPSHOT.jar
Created 09-09-2016 07:34 PM
I built it in my local windows env. I noticed the hadoop version is 2.2 the jars are automatically downloaded by Maven build. Where to set the version, I didn't see it in my pom.xml
Here is my partial content of pom.xml
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<!-- Component versions are defined here -->
<hadoop.version>2.7.1</hadoop.version>
<spark.version>1.5.2</spark.version>
<avro.version>1.8.1</avro.version>
<log4j.version>1.2.17</log4j.version>
<scala.version>2.10.6</scala.version>
</properties>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.datastax.spark</groupId>
<artifactId>spark-cassandra-connector_2.10</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-csv_2.10</artifactId>
<version>1.4.0</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-xml_2.10</artifactId>
<version>0.3.3</version>
</dependency>
<dependency>
<groupId>com.databricks</groupId>
<artifactId>spark-avro_2.10</artifactId>
<version>2.0.1</version>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>18.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc_2.10</artifactId>
<version>2.4.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>1.2.1</version>
</dependency>
Created 09-26-2016 04:06 PM
I agree with @cduby that there is a version conflict between the used hadoop library and what Spark is actually expecting. The best way to find such a problem is to use the dependency:tree ability of Maven in combination with the artifact that contains the problematic class. In this way, you can find which transitive dependencies are getting fetched by your Spark application by default.
So, I had exactly the same problem and in order to solve it I followed the following process.
The following hadoop-common dependency solved the problem for me.
<dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.6.1</version> </dependency> <!-- Spark dependencies --> <dependency> ...
Created 09-26-2016 04:29 PM
@Jay Zhou and @Georgios Gkekas Also check out this article on how to use the artifacts in the Hortonworks repository from Maven. It is for building streaming applications but can should be able to translate to other Spark applications:
Created 09-26-2016 04:31 PM
Thanks. Yes. that is what I did. I have resolved this issue a few weeks ago... sorry to update late.
Created 09-26-2016 04:33 PM
Glad you got it working.
Created 09-26-2016 06:21 PM
Thanks for helping.