Created on 09-10-2017 12:45 PM - edited 09-16-2022 05:13 AM
I am using CDH 5.12
I am getting below error, while using spark cli and also from eclipse program
hive-site.xml <property> <name>datanucleus.autoCreateSchema</name> <value>false</value> </property> [cloudera@quickstart ~]$ sudo service hive-metastore status Hive Metastore is running [ OK ] [cloudera@quickstart ~]$ sudo service hive-server2 status Hive Server2 is running [ OK ]
scala> import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive._
scala> val hc = new HiveContext(sc)
hc: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@41c04a0c
scala> hc.sql("select * from customer1")
17/09/10 23:13:41 WARN metastore.ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.1.0-cdh5.12.0
17/09/10 23:13:42 WARN metastore.ObjectStore: Failed to get database default, returning NoSuchObjectException
org.apache.spark.sql.AnalysisException: Table not found: customer1; line 1 pos 14
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:305)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$9.applyOrElse(Analyzer.scala:314)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$9.applyOrElse(Analyzer.scala:309)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:57)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:57)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:56)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:54)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$1.apply(LogicalPlan.scala:54)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:281)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildren(TreeNode.scala:321)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:54)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:309)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:299)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:83)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:80)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:80)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:72)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:72)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:37)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:37)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:35)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52)
at org.apache.spark.sql.SQLContext.sql(SQLContext.scala:829)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:33)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:44)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:48)
at $iwC$$iwC$$iwC.<init>(<console>:50)
at $iwC$$iwC.<init>(<console>:52)
at $iwC.<init>(<console>:54)
at <init>(<console>:56)
at .<init>(<console>:60)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1045)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1326)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:821)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:852)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:800)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1064)
at org.apache.spark.repl.Main$.main(Main.scala:35)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:730)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Created 09-11-2017 11:02 AM
Please provide the schema/database where table is available. It is clearly saying table is not available in default database.
Go to beeline/hive and check show tables. By default it is checking in default database.
org.apache.spark.sql.AnalysisException: Table not found: customer1; line 1 pos 14
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:305)
at
Thanks,
Manu
Created 09-11-2017 01:29 PM
Hey Manu,
the table exists in default database.
hive> use default; OK Time taken: 0.034 seconds hive> show tables; OK customer1 Time taken: 0.034 seconds, Fetched: 1 row(s) hive> describe customer1; OK id int name string city string Time taken: 0.342 seconds, Fetched: 3 row(s) hive> select count(*) from customer1; Query ID = cloudera_20170912015757_ed855d4e-fb2e-49f6-91ec-13d15922d407 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1505161189626_0001, Tracking URL = http://quickstart.cloudera:8088/proxy/application_1505161189626_0001/ Kill Command = /usr/lib/hadoop/bin/hadoop job -kill job_1505161189626_0001 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2017-09-12 01:57:20,277 Stage-1 map = 0%, reduce = 0% 2017-09-12 01:57:31,879 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.99 sec 2017-09-12 01:57:44,178 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 4.73 sec MapReduce Total cumulative CPU time: 4 seconds 730 msec Ended Job = job_1505161189626_0001 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.73 sec HDFS Read: 7132 HDFS Write: 2 SUCCESS Total MapReduce CPU Time Spent: 4 seconds 730 msec OK 4 Time taken: 45.104 seconds, Fetched: 1 row(s)
Created 09-11-2017 01:34 PM
Created 11-08-2017 08:54 AM
Hello! I am seeing this same issue ... was there a resolution to your problem? Thanks.
Created 12-08-2019 04:49 PM
I am having the same problem when creating a table in default schema
Is there any solution?
Created 05-13-2020 08:25 AM
hello,
did you find a solution for this issue please?
thanks
Created 05-13-2020 03:29 PM
@oblamine As this is an older post you would have a better chance of receiving a resolution by starting a new thread. This will also provide the opportunity to provide details specific to your environment that could aid others in providing a more accurate answer to your question.