Member since
10-17-2016
45
Posts
10
Kudos Received
3
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
1290 | 04-21-2017 06:14 PM | |
4888 | 04-19-2017 05:59 PM | |
1143 | 04-11-2017 08:24 PM |
12-20-2016
10:31 PM
I guess its something to do with zeppelin version. I didn't face the issue while running it in spark-shell programming. Thanks for the support as always when needed.
... View more
12-20-2016
07:47 PM
@Timothy Spann I am working on the hortonworks sandbox 2.4 on azure environment. Currently running the program in zeppelin. Your code as well threw the same above listed error. Please advice.
... View more
12-20-2016
07:15 PM
@Timothy Spann - I use 1.6 version sc.version res377: String = 1.6.0 I still face that error - Not sure why.
... View more
12-20-2016
05:58 PM
1 Kudo
I facing error while transform (tokenizer.transform) - Please advice ----------------------------------------------------------------------------------------------------------------------------------------------------------- import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer} val sentenceData = sqlContext.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsData = tokenizer.transform(sentenceData) ----------------------------------------------------------------------------------------------------------------------------------------------------------- Error message for reference --> import org.apache.spark.ml.feature sentenceData: org.apache.spark.sql.DataFrame = [label: int, sentence: string]
tokenizer: org.apache.spark.ml.feature.Tokenizer = tok_6ac8a05b403d <console>:61: error: type mismatch;
found : org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.DataFrame
required: org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.org.apache.spark.sql.DataFrame
val wordsData = tokenizer.transform(sentenceData)
... View more
Labels:
- Labels:
-
Apache Spark
-
Apache Zeppelin
12-20-2016
05:54 PM
While running over tutorial https://community.hortonworks.com/articles/53903/spark-machine-learning-pipeline-by-example.html, I face issue in below line val header = flight2007.first val trainingData = flight2007
.filter(x => x != header)
unhandled exception while transforming <console>
error: uncaught exception during compilation: java.lang.NullPointerException
--------------------- Error message in detail after successful display of the header val. while compiling: <console>
during phase: specialize
library version: version 2.10.5
compiler version: version 2.10.5
reconstructed args: -classpath /usr/hdp/2.4.0.0-169/zeppelin/lib/interpreter/spark/zeppelin-spark-0.6.0.2.4.0.0-169.jar:/etc/spark/2.4.0.0-169/0:/usr/hdp/2.4.0.0-169/spark/lib/spark-assembly-1.6.0.2.4.0.0-169-hadoop2.7.1.2.4.0.0-169.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-api-jdo-3.2.6.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-core-3.2.10.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-rdbms-3.2.9.jar:/etc/hadoop/2.4.0.0-169/0:/usr/hdp/current/zeppelin-server/lib/interpreter/spark/zeppelin-spark-0.6.0.2.4.0.0-169.jar:/usr/hdp/current/spark-historyserver/conf:/usr/hdp/2.4.0.0-169/spark/lib/spark-assembly-1.6.0.2.4.0.0-169-hadoop2.7.1.2.4.0.0-169.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-api-jdo-3.2.6.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-core-3.2.10.jar:/usr/hdp/2.4.0.0-169/spark/lib/datanucleus-rdbms-3.2.9.jar:/usr/hdp/current/hadoop-client/conf:/usr/hdp/current/zeppelin-server/lib/interpreter/spark/zeppelin-spark-0.6.0.2.4.0.0-169.jar
last tree to typer: TypeTree(anonymous class $anonfun)
symbol: anonymous class $anonfun (flags: final <synthetic>)
symbol definition: final class $anonfun extends AbstractFunction1[Array[String],Flight] with Serializable
tpe: scala.runtime.AbstractFunction1[Array[String],Flight] with Serializable
symbol owners: anonymous class $anonfun -> value trainingData -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $read -> package $line568
context owners: anonymous class $anonfun -> value trainingData -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $iwC -> class $read -> package $line568
== Enclosing template or block ==
ClassDef( // final class $anonfun extends AbstractFunction1[String,Boolean] with Serializable
final <synthetic> @{ SerialVersionUID(0) }
"$anonfun"
[]
Template( // val <local $anonfun>: <notype>, tree.tpe=scala.runtime.AbstractFunction1[String,Boolean] with Serializable
"scala.runtime.AbstractFunction1", "scala.Serializable" // parents
ValDef(
private
"_"
<tpt>
<empty>
)
// 2 statements
DefDef( // def <init>(): scala.runtime.AbstractFunction1[String,Boolean] with Serializable
<method> <triedcooking>
"<init>"
[]
List(Nil)
<tpt> // tree.tpe=scala.runtime.AbstractFunction1[String,Boolean] with Serializable
Block( // tree.tpe=Unit
Apply( // def <init>(): scala.runtime.AbstractFunction1[T1,R] in class AbstractFunction1, tree.tpe=scala.runtime.AbstractFunction1[String,Boolean]
$anonfun.super."<init>" // def <init>(): scala.runtime.AbstractFunction1[T1,R] in class AbstractFunction1, tree.tpe=()scala.runtime.AbstractFunction1[String,Boolean]
Nil
)
()
)
)
DefDef( // final def apply(x: String): Boolean
<method> final
"apply"
[]
// 1 parameter list
ValDef( // x: String
<param> <triedcooking>
"x"
<tpt> // tree.tpe=String
<empty>
)
<tpt> // tree.tpe=Boolean
Apply( // final def !=(x$1: Object): Boolean in class Object, tree.tpe=Boolean
"x"."$bang$eq" // final def !=(x$1: Object): Boolean in class Object, tree.tpe=(x$1: Object)Boolean
Apply( // val header(): String, tree.tpe=String
$iwC.this.$VAL1317().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw().$iw()."header" // val header(): String, tree.tpe=()String
Nil
)
)
)
)
)
== Expanded type of tree ==
TypeRef(
TypeSymbol(
final class $anonfun extends AbstractFunction1[Array[String],Flight] with Serializable
)
)
unhandled exception while transforming <console>
error: uncaught exception during compilation: java.lang.NullPointerException
----------------------------------------------
... View more
Labels:
- Labels:
-
Apache Spark
-
Apache Zeppelin
11-28-2016
10:06 PM
You are right - its 0.3 and I see that in the properties file # Core Properties#
nifi.version=0.3.0-SNAPSHOT Please advice on steps for migration to latest version
... View more
11-28-2016
09:47 PM
nifi-ambari-stackversions.png @matt - Are you sure NiFi version is 0.3 as I see the amabari stacks and versions where its listed as 1.1. Please double check.
... View more
11-28-2016
09:40 PM
Hi Matt. Thanks and appreciate your response. I installed sandbox from microsoft azure and used ambari to install the NiFi service. Seems like it holds the outdated one - Could you please share me the steps to upgrade to latest NiFi version on this current HDP or any alternatives.
... View more
11-28-2016
07:25 PM
hdp-version.png nifi-version.png Can I know why HIVE related processors are not getting listed under my Apache NiFi Processors. I am looking for putHiveStreaming, putHiveQL, selectHiveQL. Please advice.
... View more
Labels:
- Labels:
-
Apache Hive
-
Apache NiFi
11-23-2016
02:10 AM
Hi. Appreciate your answer. Sorry for delay in response - I was away for a while. ScanAttribute processor sounds to be the answer to my question and I did try a sample but its not picking up value and filtering the incoming tweets accordingly. Can you provide an example with snapshots. Incoming tweets via getTwitter Processor >> ScanAttribute processor. (dictionary file : <location of text file with keywords), attribute pattern - $.text, Match criteria - atleast one value must match)
... View more
- « Previous
-
- 1
- 2
- Next »