Member since
09-26-2015
14
Posts
27
Kudos Received
7
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
15629 | 08-24-2017 09:37 PM | |
1736 | 03-30-2017 06:40 PM | |
7585 | 03-23-2017 06:22 PM | |
5467 | 03-06-2017 10:01 PM | |
3964 | 02-15-2017 08:56 PM |
08-25-2017
05:33 PM
1 Kudo
@Vivekanandan Gunasekaran What version of spark are you using? From the error, it looks like issue is similar to https://issues.apache.org/jira/browse/HIVE-14137. How temptable was created?
... View more
08-24-2017
09:37 PM
2 Kudos
@Prabhu Muthaiyan You can write query similar to this to get count of numberic values: select count(*) from <tableName> where cast(<colName> as double) is not NULL
... View more
08-14-2017
06:16 PM
2 Kudos
@Luis Ruiz You should use map() complex type constructor in your insert statement. insert into table testMap SELECT map('AND','01'); You can find more details about complex type constructors from here: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
... View more
03-30-2017
06:40 PM
4 Kudos
Hi @Devender Yadav, what version of hive are you running? It might be due to known vectorization issue mentioned in this jira: https://issues.apache.org/jira/browse/HIVE-9862
... View more
03-23-2017
06:22 PM
2 Kudos
@zkfs, mask_show_last_n udf can be used for the scenario you mentioned. You can run this query from the beeline to get additional details about udf: DESCRIBE FUNCTION extended mask_show_last_n;
+---------------------------------------------------------------------------------------------------------------------------------+--+
| tab_name |
+---------------------------------------------------------------------------------------------------------------------------------+--+
| masks all but last n characters of the value |
| Examples: |
| mask_show_last_n(ccn, 8) |
| mask_show_last_n(ccn, 8, 'x', 'x', 'x') |
| Arguments: |
| mask_show_last_n(value, charCount, upperChar, lowerChar, digitChar, otherChar, numberChar) |
| value - value to mask. Supported types: TINYINT, SMALLINT, INT, BIGINT, STRING, VARCHAR, CHAR |
| charCount - number of characters. Default value: 4 |
| upperChar - character to replace upper-case characters with. Specify -1 to retain original character. Default value: 'X' |
| lowerChar - character to replace lower-case characters with. Specify -1 to retain original character. Default value: 'x' |
| digitChar - character to replace digit characters with. Specify -1 to retain original character. Default value: 'n' |
| otherChar - character to replace all other characters with. Specify -1 to retain original character. Default value: -1 |
| numberChar - character to replace digits in a number with. Valid values: 0-9. Default value: '1' |
| NULL |
+---------------------------------------------------------------------------------------------------------------------------------+--+
Following query returns string with all the characters masked except last 4: select mask_show_last_n('AAbb1234567', 4, 'X', 'X', 'X');
+--------------+--+
| _c0 |
+--------------+--+
| XXXXXXX4567 |
+--------------+--+
1 row selected (0.085 seconds
... View more
03-22-2017
08:47 PM
1 Kudo
@Morten R., It is difficult to get to the root cause from the error message that you have provided. Can you share detailed error message from the hiveserver2 log and application log? You can generate application log by running 'yarn logs -applicationId <application_id>'.
... View more
03-22-2017
05:47 PM
2 Kudos
You can use data masking udfs instead of disabling the column. You can find more details from here: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-DataMaskingFunctions https://issues.apache.org/jira/browse/HIVE-13568
... View more
03-06-2017
10:01 PM
4 Kudos
From the error message it seems you are trying to read acid orc table from spark sql. There are certain limitations while reading this type of table from spark sql. You can find more details in these jiras: https://issues.apache.org/jira/browse/SPARK-16996 https://issues.apache.org/jira/browse/HIVE-15189 You can force compaction by running "alter table compact" query before reading data from spark sql to workaround this issue.
... View more
02-15-2017
08:56 PM
2 Kudos
@Reddy, You need to specify serialization.encoding property along with LazySimpleSerDe while creating table to load non-utf formatted data. Here is one example: create table table_with_non_utf8_encoding (name STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES ('serialization.encoding'='ISO8859_1');
load data local inpath '../encoding-ISO8859_1.txt' overwrite into table table_with_non_utf8_encoding;
More details in this jira: https://issues.apache.org/jira/browse/HIVE-7142
... View more
01-25-2017
11:42 PM
3 Kudos
@vj pan, you can use lateral view in your CTAS query to separate the fields from Details_str.
You can create table like this in database A create table databaseA.testtable(
event_ts timestamp,
cust_id int,
ban int,
detail_str string);
Then, use following CTAS query with lateral view to create second table in database B create table databaseB.testtable as
select event_ts,
cust_id,
ban,
detail_str,
lv_detail_str.type_cd,
lv_detail_str.head_id,
lv_detail_str.out_id,
lv_detail_str.org_type_des
from databaseA.testtable a
lateral view
json_tuple(a.detail_str,'type_cd','head_id','out_id','org_type_des') lv_detail_str as
type_cd,
head_id,
out_id,
org_type_des;
... View more