Support Questions

Find answers, ask questions, and share your expertise

MR2 Service Check failing after New Installing HDP 2.4 #Container killed on request. Exit code is 143 on VM

avatar
Expert Contributor
18/01/30 05:36:48 INFO impl.YarnClientImpl: Submitted application application_1517270734071_0001
18/01/30 05:36:49 INFO mapreduce.Job: The url to track the job: http://centos1.test.com:8088/proxy/application_1517270734071_0001/
18/01/30 05:36:49 INFO mapreduce.Job: Running job: job_1517270734071_0001
18/01/30 05:37:28 INFO mapreduce.Job: Job job_1517270734071_0001 running in uber mode : false
18/01/30 05:37:28 INFO mapreduce.Job:  map 0% reduce 0%
18/01/30 05:37:28 INFO mapreduce.Job: Job job_1517270734071_0001 failed with state FAILED due to: Application application_1517270734071_0001 failed 2 times due to AM Container for appattempt_1517270734071_0001_000002 exited with  exitCode: -104
For more detailed output, check application tracking page:http://centos1.test.com:8088/cluster/app/application_1517270734071_0001Then, click on links to logs of each attempt.
Diagnostics: Container [pid=49027,containerID=container_e03_1517270734071_0001_02_000001] is running beyond physical memory limits. Current usage: 173 MB of 170 MB physical memory used; 1.9 GB of 680 MB virtual memory used. Killing container.
Dump of the process-tree for container_e03_1517270734071_0001_02_000001 :
	|- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
	|- 49027 49025 49027 49027 (bash) 0 0 108630016 187 /bin/bash -c /usr/jdk64/jdk1.8.0_60/bin/java -Djava.io.tmpdir=/hadoop/yarn/local/usercache/ambari-qa/appcache/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dhdp.version=2.4.3.0-227 -Xmx136m -Dhdp.version=2.4.3.0-227 org.apache.hadoop.mapreduce.v2.app.MRAppMaster 1>/hadoop/yarn/log/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001/stdout 2>/hadoop/yarn/log/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001/stderr  
	|- 49041 49027 49027 49027 (java) 1111 341 1950732288 44101 /usr/jdk64/jdk1.8.0_60/bin/java -Djava.io.tmpdir=/hadoop/yarn/local/usercache/ambari-qa/appcache/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1517270734071_0001/container_e03_1517270734071_0001_02_000001 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dhdp.version=2.4.3.0-227 -Xmx136m -Dhdp.version=2.4.3.0-227 org.apache.hadoop.mapreduce.v2.app.MRAppMaster 

Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
Failing this attempt. Failing the application.
18/01/30 05:37:28 INFO mapreduce.Job: Counters: 0
1 ACCEPTED SOLUTION

avatar
Expert Contributor

After further Analysis found following things and changed , then "MR2 service check/Container killed on request Exit code is 143"

went fine.

1) yarn-site.xml :-

=>Initial container not able to allocate the memory and size was yarn.scheduler.minimum-allocation-mb(178 MB) and yarn.scheduler.maximum-allocation-mb (512 MB) only.

=>Checked HDFS Block size =128 MB, as initial container not able to allocate, increased the minimum/maximum to multiple of 128 MB block size as below .

=> Changed the following initial container size from yarn.scheduler.minimum-allocation-mb(178 to 512 MB) and yarn.scheduler.maximum-allocation-mb (512 to 1024 MB) in yarn-site.xml.

2) mapred-site.xml:-

Once above parameter changed in yarn-site.xml, below parameter required to change in mapred-site.xml

=> mapreduce.task.io.sort.mb from 95 to 286 MB,mapreduce.map.memory.mb/mapreduce.reduce.memory.mb

to 512 MB

=>yarn.app.mapreduce.am.resource.mb from 170 to 512 MB. increase these parameter value

multiple of 128 MB block size to get out of container killed error .

60516-mapred-site.jpg

As above we required to change parameter in yarn-site.xml, mapred-site.xml through ambari due resource constraint on existing till we get the out of error "Container killed on request. Exit code is 143.

We can apply same rule to get out of below error

Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143
Failing this attempt. Failing the application.
INFO mapreduce.Job: Counters: 0

View solution in original post

6 REPLIES 6

avatar
Master Mentor

@zkfs

We see the message like following"

Container ..... is running beyond physical memory limits. Current usage: 173 MB of 170 MB physical memory used

.

So it looks like the mapreduce tuning is not done properly. Please check the value of the following parameters, looks like the value is set to small value.

mapreduce.reduce.memory.mb
mapreduce.map.memory.mb
mapreduce.reduce.java.opts
mapreduce.map.java.opts

.

avatar
Expert Contributor

Thanks Jay for reply.

Currently parameter has been set and values as below.

mapreduce.reduce.memory.mb: 400 MB
mapreduce.map.memory.mb:- 350 MB
mapreduce.reduce.java.opts : 240 MB
mapreduce.map.java.opts:- 250 MB

avatar
Master Mentor

@zkfs

Yes, initially those values looks OK, however as they are tuning parameters so it depends on what kind of intense job are you running and accordingly you might have to increase the value based on requirement.

Do you see any improvement after making those changes? If not then may be we will need bit larger values.

avatar
Expert Contributor

missed to update even after set above parameter service check getting failed with same error.

Please advise

avatar
Expert Contributor

Service check getting fail

  • Container killed on request.Exit code is143
  • Container exited with a non-zero exit code 143
  • Failingthis attempt.Failing the application.
  • avatar
    Expert Contributor

    After further Analysis found following things and changed , then "MR2 service check/Container killed on request Exit code is 143"

    went fine.

    1) yarn-site.xml :-

    =>Initial container not able to allocate the memory and size was yarn.scheduler.minimum-allocation-mb(178 MB) and yarn.scheduler.maximum-allocation-mb (512 MB) only.

    =>Checked HDFS Block size =128 MB, as initial container not able to allocate, increased the minimum/maximum to multiple of 128 MB block size as below .

    => Changed the following initial container size from yarn.scheduler.minimum-allocation-mb(178 to 512 MB) and yarn.scheduler.maximum-allocation-mb (512 to 1024 MB) in yarn-site.xml.

    2) mapred-site.xml:-

    Once above parameter changed in yarn-site.xml, below parameter required to change in mapred-site.xml

    => mapreduce.task.io.sort.mb from 95 to 286 MB,mapreduce.map.memory.mb/mapreduce.reduce.memory.mb

    to 512 MB

    =>yarn.app.mapreduce.am.resource.mb from 170 to 512 MB. increase these parameter value

    multiple of 128 MB block size to get out of container killed error .

    60516-mapred-site.jpg

    As above we required to change parameter in yarn-site.xml, mapred-site.xml through ambari due resource constraint on existing till we get the out of error "Container killed on request. Exit code is 143.

    We can apply same rule to get out of below error

    Container killed on request. Exit code is 143
    Container exited with a non-zero exit code 143
    Failing this attempt. Failing the application.
    INFO mapreduce.Job: Counters: 0