Support Questions

Find answers, ask questions, and share your expertise

Yarrn RM trashold error

avatar
Expert Contributor
Hello!

I'm using new HDP2.6. and Ambari. On it I have installed Yarn, MapReduce, Spark2, Hadoop and etc.

I'm trying to enter spark shell with --master yarn but I'm constantly getting this kind of error:

bin/spark-shell --master yarn --deploy-mode client
Warning: Ignoring non-spark config property: spark-executor.memory=4g
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
17/06/12 13:38:38 ERROR SparkContext: Error initializing SparkContext.
java.lang.IllegalArgumentException: Required executor memory (8192+819 MB) is above the max threshold (8192 MB) of this cluster! Please check the values of 'yarn.scheduler.maximum-allocation-mb' and/or 'yarn.nodemanager.resource.memory-mb'.
        at org.apache.spark.deploy.yarn.Client.verifyClusterResources(Client.scala:334)
        at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:168)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:156)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
        at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2320)
        at org.apache.spark.sql.SparkSession$Builder$anonfun$6.apply(SparkSession.scala:868)
        at org.apache.spark.sql.SparkSession$Builder$anonfun$6.apply(SparkSession.scala:860)
        at scala.Option.getOrElse(Option.scala:121)
        at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:860)
        at org.apache.spark.repl.Main$.createSparkSession(Main.scala:96)
        at $line3.$read$iw$iw.<init>(<console>:15)
        at $line3.$read$iw.<init>(<console>:42)
        at $line3.$read.<init>(<console>:44)
        at $line3.$read$.<init>(<console>:48)
        at $line3.$read$.<clinit>(<console>)
        at $line3.$eval$.$print$lzycompute(<console>:7)
        at $line3.$eval$.$print(<console>:6)
        at $line3.$eval.$print(<console>)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
        at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
        at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
        at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
        at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
        at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
        at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
        at org.apache.spark.repl.SparkILoop$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
        at org.apache.spark.repl.SparkILoop$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
        at org.apache.spark.repl.SparkILoop$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
        at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
        at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
        at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:105)
        at scala.tools.nsc.interpreter.ILoop$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
        at scala.tools.nsc.interpreter.ILoop$anonfun$process$1.apply(ILoop.scala:909)
        at scala.tools.nsc.interpreter.ILoop$anonfun$process$1.apply(ILoop.scala:909)
        at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
        at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
        at org.apache.spark.repl.Main$.doMain(Main.scala:69)
        at org.apache.spark.repl.Main$.main(Main.scala:52)
        at org.apache.spark.repl.Main.main(Main.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$runMain(SparkSubmit.scala:745)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Also I tried with this line of code:

bin/spark-shell --conf spark-executor.memory=4g --conf spark.executor.cores=2 --master yarn --deploy-mode client

But still getting exactly the same error.

This is my Yarn resources:

16244-untitled.png

And this are apps that succeded on Ambari test:

16245-screenshot-1.jpg

Can someone tell me what I'm doing wrong here because I'm running nuts. Trying to fix this already one week and I can't anymore. Please someone. 😞

@Wynner

@Matt Clarke

@Jay SenSharma

1 ACCEPTED SOLUTION

avatar
2 REPLIES 2

avatar

@Ivan Majnaric- I think you accidentally posted the same question twice:

https://community.hortonworks.com/questions/107268/yarn-threshold-error.html

avatar
Expert Contributor

Yes I did, because whole page had some bug or something, ty 😮