Created 02-16-2016 07:47 PM
Hi:
I am running one job from RStudio and y get this error:
16/02/16 13:01:30 INFO mapreduce.Job: map 100% reduce 24% 16/02/16 13:12:22 INFO mapreduce.Job: map 100% reduce 100% 16/02/16 13:12:22 INFO mapreduce.Job: Task Id : attempt_1455198426748_0476_r_000000_0, Status : FAILED Container [pid=18361,containerID=container_e24_1455198426748_0476_01_000499] is running beyond physical memory limits. Current usage: 7.1 GB of 7 GB physical memory used; 12.9 GB of 14.7 GB virtual memory used. Killing container. Dump of the process-tree for container_e24_1455198426748_0476_01_000499 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 18377 18361 18361 18361 (java) 3320 733 8102256640 609337 /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_0 26388279067123 |- 19618 18377 18361 18361 (R) 96691 1583 5403787264 1249728 /usr/lib64/R/bin/exec/R --slave --no-restore --vanilla --file=./rmr-streaming-combinefd060b81bfd |- 19629 19618 18361 18361 (cat) 0 0 103407616 166 cat |- 18361 18359 18361 18361 (bash) 0 0 108617728 341 /bin/bash -c /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_0 26388279067123 1>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499/stdout 2>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_000499/stderr |- 19627 19618 18361 18361 (cat) 1 48 103407616 174 cat Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143 16/02/16 13:12:23 INFO mapreduce.Job: map 100% reduce 0% 16/02/16 13:12:34 INFO mapreduce.Job: map 100% reduce 15% 16/02/16 13:12:37 INFO mapreduce.Job: map 100% reduce 21% 16/02/16 13:12:40 INFO mapreduce.Job: map 100% reduce 24% 16/02/16 13:28:26 INFO mapreduce.Job: Task Id : attempt_1455198426748_0476_r_000000_1, Status : FAILED Container [pid=21694,containerID=container_e24_1455198426748_0476_01_001310] is running beyond physical memory limits. Current usage: 7.1 GB of 7 GB physical memory used; 12.6 GB of 14.7 GB virtual memory used. Killing container. Dump of the process-tree for container_e24_1455198426748_0476_01_001310 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 21694 21692 21694 21694 (bash) 0 0 108617728 341 /bin/bash -c /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_1 26388279067934 1>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310/stdout 2>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310/stderr |- 21781 21704 21694 21694 (R) 93564 1394 5118803968 1185913 /usr/lib64/R/bin/exec/R --slave --no-restore --vanilla --file=./rmr-streaming-combinefd060b81bfd |- 21807 21781 21694 21694 (cat) 0 43 103407616 173 cat |- 21704 21694 21694 21694 (java) 2526 787 8089718784 664117 /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001310 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_1 26388279067934 |- 21810 21781 21694 21694 (cat) 0 0 103407616 166 cat Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143 16/02/16 13:28:27 INFO mapreduce.Job: map 100% reduce 0% 16/02/16 13:28:38 INFO mapreduce.Job: map 100% reduce 16% 16/02/16 13:28:41 INFO mapreduce.Job: map 100% reduce 20% 16/02/16 13:28:44 INFO mapreduce.Job: map 100% reduce 24% 16/02/16 13:46:02 INFO mapreduce.Job: Task Id : attempt_1455198426748_0476_r_000000_2, Status : FAILED Container [pid=23643,containerID=container_e24_1455198426748_0476_01_001311] is running beyond physical memory limits. Current usage: 7.1 GB of 7 GB physical memory used; 12.8 GB of 14.7 GB virtual memory used. Killing container. Dump of the process-tree for container_e24_1455198426748_0476_01_001311 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 23737 23729 23643 23643 (cat) 0 44 103407616 174 cat |- 23738 23729 23643 23643 (cat) 0 0 103407616 166 cat |- 23729 23653 23643 23643 (R) 101777 1652 5376724992 1248882 /usr/lib64/R/bin/exec/R --slave --no-restore --vanilla --file=./rmr-streaming-combinefd060b81bfd |- 23653 23643 23643 23643 (java) 2328 784 8079331328 617129 /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_2 26388279067935 |- 23643 23641 23643 23643 (bash) 0 0 108617728 341 /bin/bash -c /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.16 42940 attempt_1455198426748_0476_r_000000_2 26388279067935 1>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311/stdout 2>/hadoop/yarn/log/application_1455198426748_0476/container_e24_1455198426748_0476_01_001311/stderr Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143 16/02/16 13:46:03 INFO mapreduce.Job: map 100% reduce 0% 16/02/16 13:46:15 INFO mapreduce.Job: map 100% reduce 17% 16/02/16 13:46:18 INFO mapreduce.Job: map 100% reduce 22% 16/02/16 13:46:21 INFO mapreduce.Job: map 100% reduce 24% 16/02/16 13:59:00 INFO mapreduce.Job: map 100% reduce 100% 16/02/16 13:59:00 INFO mapreduce.Job: Job job_1455198426748_0476 failed with state FAILED due to: Task failed task_1455198426748_0476_r_000000 Job failed as tasks failed. failedMaps:0 failedReduces:1 16/02/16 13:59:00 INFO mapreduce.Job: Counters: 39 File System Counters FILE: Number of bytes read=0 FILE: Number of bytes written=2064381938 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=13416462815 HDFS: Number of bytes written=0 HDFS: Number of read operations=321 HDFS: Number of large read operations=0 HDFS: Number of write operations=0 Job Counters Failed reduce tasks=4 Launched map tasks=107 Launched reduce tasks=4 Data-local map tasks=107 Total time spent by all maps in occupied slots (ms)=37720330 Total time spent by all reduces in occupied slots (ms)=7956034 Total time spent by all map tasks (ms)=18860165 Total time spent by all reduce tasks (ms)=3978017 Total vcore-seconds taken by all map tasks=18860165 Total vcore-seconds taken by all reduce tasks=3978017 Total megabyte-seconds taken by all map tasks=77251235840 Total megabyte-seconds taken by all reduce tasks=28514425856 Map-Reduce Framework Map input records=99256589 Map output records=321 Map output bytes=2050220619 Map output materialized bytes=2050222738 Input split bytes=12519 Combine input records=321 Combine output records=321 Spilled Records=321 Failed Shuffles=0 Merged Map outputs=0 GC time elapsed (ms)=151580 CPU time spent (ms)=4098800 Physical memory (bytes) snapshot=256365596672 Virtual memory (bytes) snapshot=538256474112 Total committed heap usage (bytes)=286838489088 File Input Format Counters Bytes Read=13416450296 rmr reduce calls=107 16/02/16 13:59:00 ERROR streaming.StreamJob: Job not successful!
I think its for the memory but i thinks its for the R program, because the same job from pig worked well, any suggestion??
Thanks
Created 02-17-2016 05:00 PM
@Roberto Sancho did you look at my answer in your other question about adding a Combiner class and enabling compression from map stage as well as from reduce output.
mapreduce.map.output.compress mapreduce.map.output.compress.codec
Created 02-17-2016 09:18 AM
Hi:
After that, still doenst work, all the mapper finished correctly but in the reducer stop in 67%
packageJobJar: [] [/usr/hdp/2.3.2.0-2950/hadoop-mapreduce/hadoop-streaming-2.7.1.2.3.2.0-2950.jar] /tmp/streamjob2854666121307172018.jar tmpDir=null 16/02/17 09:57:07 INFO impl.TimelineClientImpl: Timeline service address: http://lnxbig06.cajarural.gcr:8188/ws/v1/timeline/ 16/02/17 09:57:07 INFO client.RMProxy: Connecting to ResourceManager at lnxbig05.cajarural.gcr/10.1.246.19:8050 16/02/17 09:57:08 INFO impl.TimelineClientImpl: Timeline service address: http://lnxbig06.cajarural.gcr:8188/ws/v1/timeline/ 16/02/17 09:57:08 INFO client.RMProxy: Connecting to ResourceManager at lnxbig05.cajarural.gcr/10.1.246.19:8050 16/02/17 09:57:08 INFO mapred.FileInputFormat: Total input paths to process : 14 16/02/17 09:57:08 INFO net.NetworkTopology: Adding a new node: /default-rack/10.1.246.17:50010 16/02/17 09:57:08 INFO net.NetworkTopology: Adding a new node: /default-rack/10.1.246.18:50010 16/02/17 09:57:08 INFO net.NetworkTopology: Adding a new node: /default-rack/10.1.246.16:50010 16/02/17 09:57:08 INFO net.NetworkTopology: Adding a new node: /default-rack/10.1.246.20:50010 16/02/17 09:57:09 INFO mapreduce.JobSubmitter: number of splits:107 16/02/17 09:57:09 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1455692856660_0019 16/02/17 09:57:09 INFO impl.YarnClientImpl: Submitted application application_1455692856660_0019 16/02/17 09:57:09 INFO mapreduce.Job: The url to track the job: http://lnxbig05.cajarural.gcr:8088/proxy/application_1455692856660_0019/ 16/02/17 09:57:09 INFO mapreduce.Job: Running job: job_1455692856660_0019 16/02/17 09:57:15 INFO mapreduce.Job: Job job_1455692856660_0019 running in uber mode : false 16/02/17 09:57:15 INFO mapreduce.Job: map 0% reduce 0% 16/02/17 09:57:39 INFO mapreduce.Job: map 1% reduce 0% 16/02/17 09:57:40 INFO mapreduce.Job: map 2% reduce 0% 16/02/17 09:57:41 INFO mapreduce.Job: map 3% reduce 0% 16/02/17 09:57:42 INFO mapreduce.Job: map 5% reduce 0% 16/02/17 09:57:43 INFO mapreduce.Job: map 6% reduce 0% 16/02/17 09:57:44 INFO mapreduce.Job: map 8% reduce 0% 16/02/17 09:57:45 INFO mapreduce.Job: map 13% reduce 0% 16/02/17 09:57:46 INFO mapreduce.Job: map 15% reduce 0% 16/02/17 09:57:47 INFO mapreduce.Job: map 17% reduce 0% 16/02/17 09:57:48 INFO mapreduce.Job: map 20% reduce 0% 16/02/17 09:57:49 INFO mapreduce.Job: map 22% reduce 0% 16/02/17 09:57:50 INFO mapreduce.Job: map 24% reduce 0% 16/02/17 09:57:51 INFO mapreduce.Job: map 27% reduce 0% 16/02/17 09:57:52 INFO mapreduce.Job: map 29% reduce 0% 16/02/17 09:57:53 INFO mapreduce.Job: map 31% reduce 0% 16/02/17 09:57:54 INFO mapreduce.Job: map 34% reduce 0% 16/02/17 09:57:55 INFO mapreduce.Job: map 35% reduce 0% 16/02/17 09:57:56 INFO mapreduce.Job: map 37% reduce 0% 16/02/17 09:57:57 INFO mapreduce.Job: map 41% reduce 0% 16/02/17 09:57:58 INFO mapreduce.Job: map 44% reduce 0% 16/02/17 09:57:59 INFO mapreduce.Job: map 45% reduce 0% 16/02/17 09:58:00 INFO mapreduce.Job: map 48% reduce 0% 16/02/17 09:58:01 INFO mapreduce.Job: map 51% reduce 0% 16/02/17 09:58:03 INFO mapreduce.Job: map 54% reduce 0% 16/02/17 09:58:04 INFO mapreduce.Job: map 56% reduce 0% 16/02/17 09:58:06 INFO mapreduce.Job: map 57% reduce 0% 16/02/17 09:58:07 INFO mapreduce.Job: map 58% reduce 0% 16/02/17 10:01:16 INFO mapreduce.Job: map 59% reduce 0% 16/02/17 10:01:21 INFO mapreduce.Job: map 60% reduce 0% 16/02/17 10:01:24 INFO mapreduce.Job: map 61% reduce 0% 16/02/17 10:01:28 INFO mapreduce.Job: map 62% reduce 0% 16/02/17 10:01:31 INFO mapreduce.Job: map 63% reduce 0% 16/02/17 10:01:32 INFO mapreduce.Job: map 64% reduce 0% 16/02/17 10:01:33 INFO mapreduce.Job: map 65% reduce 0% 16/02/17 10:01:35 INFO mapreduce.Job: map 66% reduce 0% 16/02/17 10:01:37 INFO mapreduce.Job: map 67% reduce 0% 16/02/17 10:01:38 INFO mapreduce.Job: map 68% reduce 0% 16/02/17 10:01:40 INFO mapreduce.Job: map 69% reduce 0% 16/02/17 10:01:42 INFO mapreduce.Job: map 70% reduce 8% 16/02/17 10:01:43 INFO mapreduce.Job: map 71% reduce 8% 16/02/17 10:01:44 INFO mapreduce.Job: map 73% reduce 8% 16/02/17 10:01:46 INFO mapreduce.Job: map 73% reduce 9% 16/02/17 10:01:47 INFO mapreduce.Job: map 74% reduce 9% 16/02/17 10:01:48 INFO mapreduce.Job: map 75% reduce 9% 16/02/17 10:01:49 INFO mapreduce.Job: map 76% reduce 10% 16/02/17 10:01:50 INFO mapreduce.Job: map 77% reduce 10% 16/02/17 10:01:51 INFO mapreduce.Job: map 78% reduce 10% 16/02/17 10:01:52 INFO mapreduce.Job: map 80% reduce 12% 16/02/17 10:01:53 INFO mapreduce.Job: map 82% reduce 12% 16/02/17 10:01:55 INFO mapreduce.Job: map 84% reduce 15% 16/02/17 10:01:56 INFO mapreduce.Job: map 86% reduce 15% 16/02/17 10:01:57 INFO mapreduce.Job: map 88% reduce 15% 16/02/17 10:01:58 INFO mapreduce.Job: map 90% reduce 21% 16/02/17 10:01:59 INFO mapreduce.Job: map 92% reduce 21% 16/02/17 10:02:00 INFO mapreduce.Job: map 93% reduce 21% 16/02/17 10:02:01 INFO mapreduce.Job: map 93% reduce 25% 16/02/17 10:02:02 INFO mapreduce.Job: map 94% reduce 25% 16/02/17 10:02:03 INFO mapreduce.Job: map 96% reduce 25% 16/02/17 10:02:04 INFO mapreduce.Job: map 96% reduce 29% 16/02/17 10:02:06 INFO mapreduce.Job: map 97% reduce 29% 16/02/17 10:02:07 INFO mapreduce.Job: map 97% reduce 30% 16/02/17 10:02:19 INFO mapreduce.Job: map 97% reduce 31% 16/02/17 10:02:25 INFO mapreduce.Job: map 98% reduce 31% 16/02/17 10:02:37 INFO mapreduce.Job: map 98% reduce 32% 16/02/17 10:02:38 INFO mapreduce.Job: map 99% reduce 32% 16/02/17 10:02:52 INFO mapreduce.Job: map 99% reduce 33% 16/02/17 10:02:56 INFO mapreduce.Job: map 100% reduce 33% 16/02/17 10:03:01 INFO mapreduce.Job: map 100% reduce 67%
Created 02-17-2016 09:19 AM
Also this error:
16/02/17 00:09:02 INFO mapreduce.Job: map 100% reduce 0% 16/02/17 00:09:13 INFO mapreduce.Job: map 100% reduce 67% 16/02/17 00:18:53 INFO mapreduce.Job: Task Id : attempt_1455662313758_0003_r_000000_2, Status : FAILED Container [pid=24748,containerID=container_e34_1455662313758_0003_01_000111] is running beyond physical memory limits. Current usage: 3.5 GB of 3.5 GB physical memory used; 10.7 GB of 14 GB virtual memory used. Killing container. Dump of the process-tree for container_e34_1455662313758_0003_01_000111 : |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE |- 24748 24745 24748 24748 (bash) 0 0 108617728 341 /bin/bash -c /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.20 52488 attempt_1455662313758_0003_r_000000_2 37383395344495 1>/hadoop/yarn/log/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111/stdout 2>/hadoop/yarn/log/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111/stderr |- 24847 24835 24748 24748 (cat) 0 22 103407616 173 cat |- 24758 24748 24748 24748 (java) 1124 305 8068534272 227250 /usr/jdk64/jdk1.8.0_40/bin/java -server -XX:NewRatio=8 -Djava.net.preferIPv4Stack=true -Dhdp.version=2.3.2.0-2950 -Xmx5734m -Djava.io.tmpdir=/hadoop/yarn/local/usercache/dangulo/appcache/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111/tmp -Dlog4j.configuration=container-log4j.properties -Dyarn.app.container.log.dir=/hadoop/yarn/log/application_1455662313758_0003/container_e34_1455662313758_0003_01_000111 -Dyarn.app.container.log.filesize=0 -Dhadoop.root.logger=INFO,CLA -Dhadoop.root.logfile=syslog -Dyarn.app.mapreduce.shuffle.logger=INFO,shuffleCLA -Dyarn.app.mapreduce.shuffle.logfile=syslog.shuffle -Dyarn.app.mapreduce.shuffle.log.filesize=0 -Dyarn.app.mapreduce.shuffle.log.backups=0 org.apache.hadoop.mapred.YarnChild 10.1.246.20 52488 attempt_1455662313758_0003_r_000000_2 37383395344495 |- 24835 24758 24748 24748 (R) 57497 677 3131715584 700751 /usr/lib64/R/bin/exec/R --slave --no-restore --vanilla --file=./rmr-streaming-reduce5178597eff5e |- 24851 24835 24748 24748 (cat) 0 0 103407616 165 cat
Created 02-17-2016 09:25 AM
Also how can i set this parameter?? 16/02/17 09:57:09 INFO mapreduce.JobSubmitter: number of splits:107
Thanks alot
Created 02-17-2016 09:25 AM
Also how can i set this parameter?? 16/02/17 09:57:09 INFO mapreduce.JobSubmitter: number of splits:107
Thanks alot
Created 02-17-2016 10:28 AM
@Roberto Sancho What paramter do you want to set?
Created 02-17-2016 10:33 AM
you do not control number of splits API handles that. You're number of splits is determined by number of blocks in your dataset and size of block.
Created on 02-17-2016 11:09 AM - edited 08-19-2019 12:53 AM
Hi:
after the execution,i saw this graphic but i think its normal??? i dont know why at this moment after minutes get the error
16/02/17 10:02:52 INFO mapreduce.Job: map 99% reduce 33%16/02/17 10:02:56 INFO mapreduce.Job: map 100% reduce 33%16/02/17 10:03:01 INFO mapreduce.Job: map 100% reduce 67%
Created 02-17-2016 04:56 PM
Hi:
I change this parameter and now the job finished after 32 minutes but, Still I dont know why from 96% to 100 % the reducer long time llok:
16/02/17 17:46:32 INFO mapreduce.Job: Running job: job_1455727501370_0001 16/02/17 17:46:39 INFO mapreduce.Job: Job job_1455727501370_0001 running in uber mode : false 16/02/17 17:46:39 INFO mapreduce.Job: map 0% reduce 0% . 16/02/17 17:53:29 INFO mapreduce.Job: map 100% reduce 92% 16/02/17 17:53:31 INFO mapreduce.Job: map 100% reduce 93% 16/02/17 17:53:46 INFO mapreduce.Job: map 100% reduce 96% "and now after 30 minute will finifhed"
The parameter i changed are:
mapreduce.job.reduce.slowstart.completedmaps=0,8 mapreduce.reduce.shuffle.parallelcopies mapreduce.reduce.shuffle.input.buffer.percent mapreduce.reduce.shuffle.merge.percent FROM RStudio rmr.options(backend.parameters = list( hadoop = list(D = "mapreduce.map.memory.mb=4096", D = "mapreduce.job.reduces=7", D="mapreduce.reduce.memory.mb=5120"
Any more parameter that it can help me???
Thanks
Created 02-17-2016 05:00 PM
@Roberto Sancho did you look at my answer in your other question about adding a Combiner class and enabling compression from map stage as well as from reduce output.
mapreduce.map.output.compress mapreduce.map.output.compress.codec
Created 02-17-2016 06:24 PM
Hi, yes i used the compress map output, i forget to comment, but still i didnt use combinner class, ill try and ill tell you.
Many many thanks.