Member since
07-24-2017
10
Posts
5
Kudos Received
2
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
2232 | 08-25-2018 07:35 AM | |
3414 | 07-29-2018 01:44 PM |
08-28-2017
01:07 PM
1 Kudo
This article explains on how to build a spark application in eclipse that can run in local mode on a kerberized hadoop cluster. Environment: Eclipse : Scala IDE Requisites: krb5.conf Copy /etc/krb5.conf from any one of the node of your cluster where keberos client is installed to local machine core-site.xml Copy core-site.xml from /usr/hdp/current/conf/core-site.xml to local machine hdfs-site.xml Copy hdfs-site.xml from /usr/hdp/current/conf/core-site.xml to local machine yarn-site.xml Copy yarn-site.xml from /usr/hdp/current/conf/core-site.xml to local machine keytab Copy keytab file of the user from cluster to local machine. This keytab file should be of the corresponding user principal. Steps: 1. Add namenode(s) hostname to host file on local machine(In case of HA, add both namenodes to host file). 2. Add hostname of KDC server to host file on local machine. 3. Right click on your project in Eclipse and add source folder, rename it to resources. 4. Copy core-site.xml, hdfs-site.xml and yarn-site.xml to resources folder(which are in local machine). Following is the sample scala code. import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.FileSystem
import org.apache.hadoop.fs.Path
import org.apache.hadoop.hdfs
import org.apache.hadoop.security.{Credentials, UserGroupInformation}
import org.apache.hadoop.security.token.{Token, TokenIdentifier}
import org.apache.hadoop.security.token.delegation.AbstractDelegationTokenIdentifier
import org.apache.spark.{SparkContext,SparkConf}
object testkerbconn {
def main(args: Array[String]){
System.setProperty("java.security.krb5.conf", "/Users/hmatta/krb5.conf")
UserGroupInformation.loginUserFromKeytab("ambari-qa-ok@EXAMPLE.COM","/Users/hmatta/smokeuser.headless.keytab")
val sparkconf = new SparkConf().setAppName("TestKerb") .setMaster("local[*]")
val sc = new SparkContext(sparkconf)
val data = sc.textFile("/tmp/idtest.ambari-qa.1502551141.07.in")
data.collect.foreach{println}
}
}
... View more
Labels: