Member since
07-16-2020
5
Posts
0
Kudos Received
0
Solutions
08-03-2020
10:00 AM
Hive is more adaptable as far as data arranges that it can check - You may see Hive as more component wealthy as far as SQL language support and inherent capacities - Hive will probably finish your inquiry regardless of whether there are hub disappointments (this makes it reasonable for long-running employments); this is valid for both Hive on MR and Hive on Spark - If Impala can run your ETL, at that point it will most likely be quicker - Impala will come up short/prematurely end a question if a hub goes down during inquiry execution - The last point may make Impala less reasonable for long-running occupations, obviously there is likewise a shorter disappointment window since questions are quicker, so Impala might just suit your ETL needs on the off chance that you can endure the faiure conduct
... View more
07-29-2020
01:15 PM
Apache Hive Strengths: The Apache Hive encourages questioning and overseeing huge datasets living in circulated capacity. Based on head of Apache Hadoop, it gives: Tools to empower simple data separate/change/load (ETL) A system to force structure on an assortment of data positions Access to documents put away either legitimately in Apache HDFS or in other data stockpiling frameworks, for example, Apache HBase Query execution by means of MapReduce Hive characterizes a straightforward SQL-like inquiry language, called QL, that empowers clients acquainted with SQL to question the data. Simultaneously, this language additionally permits developers who know about the MapReduce system to have the option to connect their custom mappers and reducers to perform increasingly modern investigation that may not be bolstered by the inherent capacities of the language. QL can likewise be stretched out with custom scalar capacities (UDF's), accumulations (UDAF's), and table capacities (UDTF's). Ordering to give quickening, list type including compaction and Bitmap file as of 0.10. Diverse capacity types, for example, plain content, RCFile, HBase, ORC, and others. Metadata stockpiling in a RDBMS, essentially decreasing an opportunity to perform semantic checks during inquiry execution. Working on compacted data put away into the Hadoop biological system utilizing calculations including DEFLATE, BWT, smart, and so on. Worked in client characterized capacities (UDFs) to control dates, strings, and other data-mining tools. Hive underpins stretching out the UDF set to deal with use-cases not bolstered by worked in capacities. SQL-like questions (HiveQL), which are verifiably changed over into MapReduce, or Spark employments. Apache Spark Strengths: Flash SQL has various intriguing highlights: it underpins various document arrangements, for example, Parquet, Avro, Text, JSON, ORC it bolsters data put away in HDFS, Apache HBase, Cassandra and Amazon S3 it underpins traditional Hadoop codecs, for example, smart, lzo, gzip it gives security through authentification by means of the utilization of a "common mystery" (spark.authenticate=true on YARN, or spark.authenticate.secret on all hubs if not YARN) encryption, Spark underpins SSL for Akka and HTTP conventions it bolsters UDFs it bolsters simultaneous questions and deals with the distribution of memory to the employments (it is conceivable to indicate the capacity of RDD like in-memory just, circle just or memory and plate it underpins reserving data in memory utilizing a SchemaRDD columnar arrangement (cacheTable(""))exposing ByteBuffer, it can likewise utilize memory-just storing uncovering User object it underpins settled structures When to utilize Spark or Hive- Hive is as yet an extraordinary decision when low inactivity/multiuser support isn't a prerequisite, for example, for clump preparing/ETL. Hive-on-Spark will limit the time windows required for such handling, yet not to a degree that makes Hive appropriate for BI Flash SQL, lets Spark clients specifically use SQL builds when composing Spark pipelines. It isn't proposed to be a universally useful SQL layer for intelligent/exploratory investigation. In any case, Spark SQL reuses the Hive frontend and metastore, giving you full similarity with existing Hive data, questions, and UDFs. Flash SQL incorporates a cost-based streamlining agent, columnar capacity and code age to make inquiries quick. Simultaneously, it scales to a great many hubs and multi hour inquiries utilizing the Spark motor, which gives full mid-question adaptation to internal failure. The exhibition is greatest bit of leeway of Spark SQL.
... View more
07-16-2020
09:41 PM
Hello, I am trying to move data from MYSQL to Snowflake. Can someone recommend me the best practices and tools for doing the same. Also, it would be great if someone can recommend how I can move the data in realtime?
... View more
Labels:
- Labels:
-
Apache Hadoop
-
Apache Hive
-
Apache NiFi