Member since
03-09-2022
11
Posts
1
Kudos Received
1
Solution
My Accepted Solutions
Title | Views | Posted |
---|---|---|
2686 | 03-14-2022 11:21 PM |
12-11-2022
10:28 PM
Thanks Matt for your inputs. Regarding the consumer group mentioned above, I understand there will be 32 to concurrent task which will be fetching the data from kafa however the consumer group ID will remain same and as long as consumer group ID remains same among the nodes the the ingestion load will be distributed equally to each node. Regarding the max time driven threads configured, this is set to 128 which is exactly 4 times of all cores across nodes(8*4=32). Regarding CPU wait time. Can you please elaborate as to how we can efficiently reduce wait time to improve the CPU usage or increasing number of cores is the only viable option here. Thanks in advance, Onkar
... View more
12-07-2022
03:16 AM
1. What is the CPU and Memory usage of your NiFi instances when the QueryRecord processor is stopped? This is almost drops down to 20% straight from 90%. Even buffered RAM also somewhat released 2. How is your QueryRecord processor configured to include scheduling and concurrent task configurations? We have consumerKafkaRecord processor feeding data into QueryRecord. the data is huge with smaller chunk of messages hence using demarcation I am batching multiple records into single flowfile and forwarding it to QueryRecord then based on select statement these likely grouped record routed further to Kafkaproducer processor. ConsumeKafka running with total 32 (8 thread per node) threads whereas QueryRecord running with 160(40 thread per node) threads to keep up with the incoming data. both having run duration set to 0(always running) and run schedule is also set to 0. What other processors were introduced as part of this new dataflow? consumerKafkaRecord,PublishkafkaRecord 3. What does disk I/O look like while this processor is running? Disk I/O given below for each individual node. Node 1 Linux 3.10.0-1160.6.1.el7.x86_64 () 07/12/22 _x86_64_ (8 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 27.61 0.00 4.18 0.51 0.00 67.69 Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sdc 0.00 20.11 45.92 86.58 1942.35 27986.13 451.74 0.08 0.62 1.92 1.00 0.2012 2.67 sda 0.00 0.31 9.64 11.27 430.75 136.20 54.22 0.01 0.26 0.90 7.92 0.2176 0.46 sdb 0.00 0.00 0.03 0.00 0.66 0.00 51.43 0.00 0.40 0.40 0.00 0.2447 0.00 dm-0 0.00 0.00 4.55 0.14 189.37 1.18 81.32 0.00 1.01 0.86 5.78 0.3576 0.17 dm-1 0.00 0.00 0.02 0.00 0.58 0.00 51.80 0.00 0.41 0.41 0.00 0.2282 0.00 dm-2 0.00 0.00 45.92 106.70 1942.27 27986.13 392.19 0.02 0.14 0.02 0.19 0.1751 2.67 dm-3 0.00 0.00 0.01 0.00 0.19 0.00 42.84 0.00 0.58 0.49 1.75 0.3694 0.00 dm-4 0.00 0.00 0.04 0.01 6.58 0.69 257.40 0.00 7.83 1.71 29.56 0.5251 0.00 dm-5 0.00 0.00 4.12 10.31 200.81 126.45 45.37 0.09 6.34 0.95 8.49 0.1599 0.23 dm-6 0.00 0.00 0.88 0.66 31.04 4.32 45.87 0.00 1.18 0.81 1.67 0.3023 0.05 dm-7 0.00 0.00 0.01 0.00 0.15 0.00 54.79 0.00 0.45 0.44 1.28 0.2212 0.00 dm-8 0.00 0.00 0.03 0.46 1.00 3.56 18.70 0.00 1.51 0.79 1.56 0.3988 0.02 sdd 0.00 0.00 1.80 0.04 82.56 0.89 91.01 0.00 1.03 1.02 1.67 0.0830 0.02 dm-9 0.00 0.00 1.79 0.04 82.51 0.89 90.96 0.00 1.03 1.02 1.65 0.0832 0.02 Node 2 Linux 3.10.0-1160.6.1.el7.x86_64 () 07/12/22 _x86_64_ (8 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 10.02 0.00 2.96 0.45 0.00 86.56 Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sda 0.00 0.29 0.71 7.09 27.72 88.67 29.85 0.06 7.18 0.89 7.81 0.2198 0.17 sdc 0.00 0.82 22.34 28.81 831.68 12659.33 527.55 0.00 0.02 1.21 2.53 0.9838 5.03 sdb 0.03 0.06 0.03 0.03 0.26 0.37 18.50 0.00 1.39 0.40 2.41 1.0156 0.01 dm-0 0.00 0.00 0.39 0.13 16.01 1.10 66.36 0.00 2.00 0.82 5.58 0.4171 0.02 dm-1 0.00 0.00 0.06 0.09 0.24 0.37 8.04 0.00 3.17 0.47 4.92 0.4512 0.01 dm-2 0.00 0.00 22.33 29.62 831.66 12659.33 519.31 0.03 0.58 1.21 0.10 0.9686 5.03 dm-3 0.00 0.00 0.00 0.00 0.01 0.00 4.10 0.00 0.39 0.24 1.46 0.3310 0.00 dm-4 0.00 0.00 0.01 0.01 2.01 0.73 245.81 0.00 15.63 1.69 31.50 0.5168 0.00 dm-5 0.00 0.00 0.20 6.17 6.61 79.26 26.97 0.05 8.47 1.13 8.71 0.1882 0.12 dm-6 0.00 0.00 0.09 0.63 2.49 4.07 18.37 0.00 1.52 0.66 1.64 0.2323 0.02 dm-7 0.00 0.00 0.00 0.00 0.01 0.00 3.40 0.00 0.24 0.23 1.25 0.2337 0.00 dm-8 0.00 0.00 0.01 0.45 0.27 3.50 16.53 0.00 1.24 0.62 1.24 0.3516 0.02 sdd 0.00 0.00 0.00 0.03 0.21 0.70 47.43 0.00 1.39 0.91 1.46 0.5485 0.00 dm-9 0.00 0.00 0.00 0.04 0.19 0.70 45.75 0.00 1.44 1.38 1.44 0.5514 0.00 Node 3 Linux 3.10.0-1160.6.1.el7.x86_64 () 07/12/22 _x86_64_ (8 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 73.23 0.00 6.84 0.13 0.00 19.81 Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sdc 0.00 81.50 39.85 312.01 3142.78 100006.63 586.31 0.13 0.36 2.56 0.08 0.2139 7.52 sda 0.01 0.37 25.76 7.96 1161.80 106.70 75.25 0.04 1.12 1.08 1.27 0.3697 1.25 sdd 0.00 0.02 2.67 0.29 104.08 6.11 74.36 0.00 1.12 1.14 0.95 0.3594 0.11 sdb 2.61 2.90 1.76 1.12 17.94 16.09 23.66 0.01 2.29 1.54 3.46 1.1372 0.33 dm-0 0.00 0.00 13.96 0.21 609.03 1.80 86.21 0.01 0.99 0.99 1.16 0.4736 0.67 dm-1 0.00 0.00 4.36 4.02 17.88 16.09 8.11 0.03 3.04 1.47 4.74 0.3903 0.33 dm-2 0.00 0.00 2.66 0.31 104.02 6.11 74.22 0.00 1.13 1.15 0.95 0.3598 0.11 dm-3 0.00 0.00 0.03 0.00 0.56 0.00 38.32 0.00 0.80 0.80 0.84 0.7141 0.00 dm-4 0.00 0.00 0.07 0.01 9.15 0.37 229.15 0.00 3.96 4.13 2.73 1.7046 0.01 dm-5 0.00 0.00 9.15 6.92 459.28 96.14 69.14 0.02 1.25 1.19 1.32 0.2486 0.40 dm-6 0.00 0.00 2.45 0.70 77.04 4.76 51.90 0.00 1.04 1.05 1.04 0.4814 0.15 dm-7 0.00 0.00 0.02 0.00 0.54 0.00 43.71 0.00 0.29 0.29 0.74 0.2028 0.00 dm-8 0.00 0.00 0.13 0.48 3.51 3.64 23.29 0.00 0.97 1.21 0.91 0.4330 0.03 dm-9 0.00 0.00 39.84 393.51 3142.72 100006.63 476.06 0.26 0.61 2.58 0.41 0.1758 7.62 Node 4 Linux 3.10.0-1160.6.1.el7.x86_64 () 07/12/22 _x86_64_ (8 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 20.01 0.00 3.07 0.28 0.00 76.64 Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sdc 0.00 12.92 48.20 62.41 1739.08 20099.77 394.88 0.07 0.66 1.06 0.35 0.3109 3.44 sdb 0.00 0.00 0.02 0.00 0.67 0.00 54.01 0.00 0.30 0.30 0.00 0.2148 0.00 sda 0.00 0.31 5.91 6.95 320.94 87.50 63.51 0.02 1.57 1.88 1.31 0.3440 0.44 dm-0 0.00 0.00 3.80 0.12 199.60 1.08 102.36 0.01 1.64 1.64 1.57 0.5978 0.23 dm-1 0.00 0.00 0.02 0.00 0.59 0.00 51.80 0.00 0.28 0.28 0.00 0.1954 0.00 dm-2 0.00 0.00 48.20 75.33 1739.00 20099.77 353.57 0.05 0.32 1.38 0.63 0.2787 3.44 dm-3 0.00 0.00 0.00 0.00 0.07 0.00 34.24 0.00 0.95 0.95 0.95 0.8181 0.00 dm-4 0.00 0.00 0.03 0.01 4.49 0.60 239.72 0.00 4.34 4.26 4.60 1.1573 0.00 dm-5 0.00 0.00 1.38 6.04 79.01 78.31 42.40 0.01 1.58 2.54 1.36 0.2008 0.15 dm-6 0.00 0.00 0.69 0.66 35.55 4.15 58.90 0.00 1.39 1.80 0.95 0.4093 0.06 dm-7 0.00 0.00 0.00 0.00 0.06 0.00 50.53 0.00 0.36 0.35 1.05 0.2573 0.00 dm-8 0.00 0.00 0.02 0.43 0.49 3.36 17.44 0.00 0.95 2.32 0.90 0.4003 0.02 sdd 0.00 0.00 1.78 0.03 125.98 0.68 140.36 0.00 2.60 2.61 1.99 0.2107 0.04 dm-9 0.00 0.00 1.78 0.03 125.95 0.68 140.00 0.00 2.60 2.61 1.98 0.2099 0.04
... View more
12-06-2022
02:29 AM
Hi All, I am running 4 node Nifi cluster with each node having 8 core and 32 GB or RAM. it was running fine until I introduced QueyRecord processor to process huge metric data (14 GB per min). the CPU now consistently remaining above 85% and memory above 90% (buffering too much). Can someone let me know how to diagnose the issue and find the root cause. Thanks in advance
... View more
Labels:
- Labels:
-
Apache NiFi
04-25-2022
11:43 PM
Hi, I am using mirrormaker 2 to copy data of one topic from source cluster to destination cluster. data is getting copied but I see 3 hours of lag. and I am not able to find the exact cause of it (whether the delay is at consumer side or producer ) as it is using kafka connect framework. Below are the config details test topic having 2 partition and replication factor as 3 number of messages coming into the source topic is 8K per second.
... View more
Labels:
- Labels:
-
Apache Kafka
03-30-2022
11:26 PM
Hi , I have two kafka cluster where I need to copy only the topic configuration from one cluster to other without copying any data. How can we do that. I know using replicator/mirrormaker it can be done but I am not interested in data here.
... View more
Labels:
- Labels:
-
Apache Kafka
03-14-2022
11:21 PM
This is now sorted. Batching using record based processor helped us to improve performance in multifold. didn't know that that the excess of flowfile might result in slowness in NIFI.
... View more
03-14-2022
11:19 PM
Thank you Araujo. This has helped a lot.
... View more
03-14-2022
01:01 AM
Hi, I am facing issue accessing one of the child json attribute while forming SQL in QureyRecord processor. PFB details here is my Avro schema added for JSON reader and writter. { "name": "MyClass", "type": "record", "namespace": "com.acme.avro", "fields": [ { "name": "labels", "type": { "name": "labels", "type": "record", "fields": [ { "name": "__name__", "type": "string" }, { "name": "cucsMemoryUnitInstanceId", "type": "string" }, { "name": "instance", "type": "string" }, { "name": "job", "type": "string" }, { "name": "monitor", "type": "string" }, { "name": "site_identifier", "type": "string" } ] } }, { "name": "name", "type": "string" }, { "name": "timestamp", "type": "string" }, { "name": "value", "type": "string" }, { "name": "producedAt", "type": "string" } ] } now the SQL quary for first level attribute works fine. like SELECT * from FLOWFILE where name = 'xyz' or SELECT * from FLOWFILE where producedAt = 'dd-mm-yyyy' however If I have to access attribute of nested JSON it wont work e.g SELECT * from FLOWFILE where site_identifier = 'xyz' --> This throws the error.
... View more
Labels:
- Labels:
-
Apache NiFi
03-10-2022
09:05 PM
Thanks Matt. The name field is different for each record json object. I will try using partition record with JSONTreeReader and see if I can segregate the flow based on name field and get it processed in batch.
... View more
03-10-2022
12:51 AM
Thanks. But I am now stuck on how to fetch cascaded fields in QueryRecord processor. everytime I use any attribute in sql which is cascaded it throws error saying no column found in table. Below is AVRO Schema. I am not able to access "cucsMemoryUnitInstanceId","site_identifier" but I am able to access "producedAt" "name" which are present at first level { "name": "MyClass", "type": "record", "namespace": "com.acme.avro", "fields": [ { "name": "labels", "type": { "name": "labels", "type": "record", "fields": [ { "name": "__name__", "type": "string" }, { "name": "cucsMemoryUnitInstanceId", "type": "string" }, { "name": "instance", "type": "string" }, { "name": "job", "type": "string" }, { "name": "monitor", "type": "string" }, { "name": "site_identifier", "type": "string" } ] } }, { "name": "name", "type": "string" }, { "name": "timestamp", "type": "string" }, { "name": "value", "type": "string" }, { "name": "producedAt", "type": "string" } ] }
... View more