Created on 01-31-2017 11:29 PM - edited on 10-14-2019 08:03 AM by sandyy006
We recommend latest java 1.8 with G1 collector ( which is default in new version). If you are using Java 1.7 and G1 collector make sure you are on u51 or higher.
A recommended setting for JVM looks like following
-Xmx8g -Xms8g -XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80
Once the JVM size is determined leave rest of the RAM to OS for page caching. You need sufficient memory for page cache to buffer for the active writers and readers.
In general disk throughput is a performance bottleneck and more disks are better. Depending on how one configures the flush behavior , a faster disk will be beneficial if they log.flush.interval.messages set to flush for every 100k messages or so.
We recommend using multiple drives to get good throughput. Do not share the same drives with any other application or for kafka application logs.
Multiple drives can be configured using log.dirs in server.properties. Kafka assigns partitions in round-robin fashion to log.dirs directories.
Note: If the data is not well balanced among partitions this can lead to load imbalance among the disks. Also kafka currently doesn’t good job of distributing data to less occupied disk in terms of space. So users can easily run out of disk space on 1 disk and other drives have free disk space and which itself can bring the Kafka down.
We highly recommend users to create alerts on disk usage for kafka drives to avoid any interruptions to running Kafka service.
RAID can potentially do better load balancing among the disks. But RAID can cause performance bottleneck due to slower writes and reduces available disk space. Although RAID can tolerate disk failures but rebuilding RAID array is I/O intensive that effectively disables the server. So RAID doesn’t provide much real availability improvement.
Kafka always write data to files immediately and allows users to configure log.flush.interval.messages to enforce flush for every configure number of messages. One needs to set log.flush.scheduler.interval.ms to a reasonable value for the above config to take into affect.
Also Kafka flushes the log file to disk whenever a log file reaches log.segment.bytes or log.roll.hours.
Note: durability in kafka does not require syncing data to disk, as a failed broker can recover the topic-partitions from its replicas. But pay attention to replica.lag.time.max.ms , defaults to 10 secs If a follower didn’t issue any fetch request or hasn’t consumed from leaders log-end offset for at least this time , leader will remove the follower from ISR. Due to the nature of this there is slight chance of message loss if you do not explicitly set log.flush.interval.messages . If the leader broker goes down and if the follower didn’t caught up to the leader it can still be under ISR for those 10 secs and the messages during this leader transition to follower can be lost.
We recommend using the default flush settings which disables the explicit fsync entirely. This means relying on background flush done by OS and Kafka’s own background flush. This provides great throughput and latency and full recovery guarantees provided by replication are stronger than sync to the local disk.
The drawback of enforcing the flushing is that its less efficient in its disk usage pattern and it can introduce latency as fsync in most Linux filesystems blocks writes to the file system compared to background flushing does much more granular page-level locking.
Kafka uses regular files on disk, and such it has no hard dependency on a specific file system.
We recommend EXT4 or XFS. Recent improvements to the XFS file system have shown it to have the better performance characteristics for Kafka’s workload without any compromise in stability.
Note: Do not use mounted shared drives and any network file systems. In our experience Kafka is known to have index failures on such file systems. Kafka uses MemoryMapped files to store the offset index which has known issues on a network file systems.
org.apache.kafka.producer.KafkaProduer , Upgrade to the New producer .
1. A producer thread going to the same partition is faster than a producer thread that sprays to multiple partitions.
2. The new Producer API provides a flush() call that client can optionally choose to invoke. If using it, the key number of bytes between two flush() calls is key factor for good performance. Microbenchmarking shows that around 4MB we get good perf (we used event of 1KB size).
Thumb rule to set batch size when using flush()
batch.size = total bytes between flush() / partition count.
3. If producer throughput maxes out and there is spare CPU and network capacity on box, add more producer processes.
4. Performance is sensitive to event size. In our measurements, 1KB events streamed faster than 100byte events. Larger events are likely to give better throughput.
5. No simple rule of thumb for linger.ms. Needs to be tried out on specific use cases. For small events (100 bytes or less), it did not not seem to have much impact in microbenchmarks.
A batch is ready when one of the following is true:
Big batching means
Defines durability level for producer.
Acks | Throughput | Latency | Durability |
0 | High | Low | No Gurantee |
1 | Medium | Medium | Leader |
-1 | Low | High | ISR |
Max.in.flight.requests.per.connection > 1 means pipelining.
On the consumer side it is generally easy to get good performance without need for tweaking.
Simple rule of thumb for good consumer performance is to keep
Number of consumer threads = Partition count
Microbenchmarking showed that Consumer performance was not as sensitive to event size or batch size as compared to Producer. Both 1kb and 100byte events showed similar throughput.
More details on Kafka microbenchmarking can be found here. https://drive.google.com/drive/u/1/folders/0ByKuMXNl6yEPfjVTRXIwaU45Qmh1Y3ktaExQa3YwZlR6SlZQTVVMckY2...
Created on 02-01-2017 01:12 AM
What are suggested/recommended topic naming conventions?
I've been influenced by period-separated templates I found on mailing lists like:
<root_namespace>.<product>.<product_specific_hierarchy> <app type>.<app name>.<data set name>.<stage of processing> <organization_name>.<app_name>.<data_set_name>
Created on 02-01-2017 05:52 AM
@Edgar Orendain Definitely do not recommend dot as part of topic names this will cause issues with kafka metrics. Using _ is better option.
Created on 02-27-2017 04:01 PM
Please help me out if you have any documentation on this above steps(installation steps , configuration etc)
Created on 05-31-2018 11:36 AM
There was a slight typo in the above article which was identified and fixed as part of feedback provided by HCC user on thread:
Created on 02-13-2019 02:08 PM
Why would you put a Google Drive link to something protected in a blog post? 🙂