Member since
09-29-2015
155
Posts
205
Kudos Received
18
Solutions
My Accepted Solutions
Title | Views | Posted |
---|---|---|
8529 | 02-17-2017 12:38 PM | |
1369 | 11-15-2016 03:56 PM | |
1916 | 11-11-2016 05:27 PM | |
15646 | 11-11-2016 12:16 AM | |
3140 | 11-10-2016 06:15 PM |
03-09-2017
03:02 PM
@vshukla @Bikas
... View more
02-17-2017
12:38 PM
I ended up looking the livy.log file for the actual error message. My user that i was trying to run as did not have a home directory in HDFS. So created a home dir with proper permissions and got it working.
... View more
02-02-2017
10:24 PM
2 Kudos
Create a HANA table for demo purposes first CREATE COLUMN TABLE "CODEJAMMER"."STORE_ADDRESS" (
ID bigint not null primary key ,
"STREETNUMBER" INTEGER CS_INT,
"STREET" NVARCHAR(200),
"LOCALITY" NVARCHAR(200),
"STATE" NVARCHAR(200),
"COUNTRY" NVARCHAR(200)) UNLOAD PRIORITY 5 AUTO MERGE ;
insert into "CODEJAMMER"."STORE_ADDRESS" (ID,STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(1,555,'Madison Ave','New York','NY','America');
insert into "CODEJAMMER"."STORE_ADDRESS" (ID,STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(2,95,'Morten Street','New York','NY','USA');
insert into "CODEJAMMER"."STORE_ADDRESS" (ID,STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(3,2395,'Broadway Street','New York','NY','USA');
Configure the SAP JDBC Driver in Spark config to where the driver is saved on ALL the nodes . My example: /tmp/ngdbc.jar
You can also load the ngdbc.jar using the zeppelin depency if you dont want to system wide access: z.reset() // clean up previously added artifact and repository
// add artifact from filesystem
z.load("/tmp/ngdbc.jar") Check out zeppelin docs for zeppelin dependency loading details: https://zeppelin.apache.org/docs/latest/interpreter/spark.html#3-dynamic-dependency-loading-via-sparkdep-interpreter
Lets test it out ( the notebook is uploaded to github, see below):
Notebook: https://raw.githubusercontent.com/zeltovhorton/sap_hana_demo/master/SparkToHana.json
Zeppelin Notebook Viewer: https://www.zeppelinhub.com/viewer/notebooks/aHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL3plbHRvdmhvcnRvbi9zYXBfaGFuYV9kZW1vL21hc3Rlci9TcGFya1RvSGFuYS5qc29u
Code :
%spark
val url="jdbc:sap://54.234.139.2:30015/?currentschema=XXX"
val prop = new java.util.Properties
prop.setProperty("user","")
prop.setProperty("password","")
prop.setProperty("driver","com.sap.db.jdbc.Driver")
//hana table
val store_address = sqlContext.read.jdbc(url,"STORE_ADDRESS",prop)
store_address.registerTempTable("store_address")
<strong> </strong>
%spark
//hive tables
val sales = sqlContext.sql("select storekey, productkey, salesamount from atlas_factsales limit 10")
sales.registerTempTable("sales")
%spark
sqlContext.sql("select s.salesamount, s.productkey, a.state, a.country from sales s inner join store_address a where a.id in (1)").show()
+-----------+----------+-----+-------+
|salesamount|productkey|state|country|
+-----------+----------+-----+-------+
| 307.26| 177| NY|America|
| 1490.0| 2180| NY|America|
| 2299.9| 2329| NY|America|
| 413.512| 1360| NY|America|
| 6990.0| 193| NY|America|
| 11184.3| 1412| NY|America|
%sql
select s.salesamount, s.productkey, a.state, a.country from sales s inner join store_address a where a.id in (1)
... View more
02-02-2017
08:31 PM
3 Kudos
Prerequisites: * SAP HANA - Instructions to setup a Cloud HANA on AWS or Azure https://community.hortonworks.com/content/kbentry/58427/getting-started-with-sap-hana-and-vora-with-hdp-us.html * HDP 2.5.x We will use Spark shell, scala code and data frames to access HANA using JDBC driver. Start the spark shell with ngdbc.jar driver. spark-shell --master yarn-client --jars /tmp/ngdbc.jar scala> val url="jdbc:sap://xxxx:30015/?currentschema=CODEJAMMER"
url: String = jdbc:sap://xxxx:30015/?currentschema=CODEJAMMER
scala>
| val prop = new java.util.Properties
prop: java.util.Properties = {}
scala> prop.setProperty("user","xxxx")
res1: Object = null
scala> prop.setProperty("password","xxxx")
res2: Object = null
scala> prop.setProperty("driver","com.sap.db.jdbc.Driver")
res3: Object = null
scala>
scala> val emp_address = sqlContext.read.jdbc(url,"EMPLOYEE_ADDRESS",prop)
emp_address: org.apache.spark.sql.DataFrame = [ID: bigint, STREETNUMBER: int, STREET: string, LOCALITY: string, STATE: string, COUNTRY: string]
scala> emp_address.show
17/02/02 20:17:19 INFO SparkContext: Starting job: show at <console>:32
.....
17/02/02 20:17:23 INFO DAGScheduler: Job 0 finished: show at <console>:32, took 4.586219 s
+---+------------+---------------+--------+-----+-------+
| ID|STREETNUMBER| STREET|LOCALITY|STATE|COUNTRY|
+---+------------+---------------+--------+-----+-------+
| 1| 555| Madison Ave|New York| NY|America|
| 2| 95| Morten Street|New York| NY| USA|
| 3| 2395|Broadway Street|New York| NY| USA|
+---+------------+---------------+--------+-----+-------+
Gotchas: If you see this error: org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: com.sap.db.jdbc.topology.Host The issue is resolved with the latest SPS12+ driver. I had to upgrade my sap driver.
... View more
02-02-2017
04:46 PM
6 Kudos
Prerequisites:
* NIFI 1.0+ * SAP HANA - Instructions to setup a Cloud HANA on AWS or Azure: https://community.hortonworks.com/content/kbentry/58427/getting-started-with-sap-hana-and-vora-with-hdp-us.html
SETUP: HANA (Source Database) In this setup we will create a table in HANA table. First follow this HCC article "Demo data in SAP Vora Using Eclipse HANA Modelling tools - Part 3" You will need to download Eclipse Neon - Eclipse IDE for Java Developers to connect to the SAP HANA that we setup in Part 1 . After you setup eclipse we will need to configure Eclipse to install HANA Modelling tools that will allow us to connect to SAP HANA and execute sql scripts to setup demo data that we will use from SAP Vora. After you establish connection to your HANA system. Run this code: DROP TABLE "CODEJAMMER"."EMPLOYEE_ADDRESS";
CREATE COLUMN TABLE "CODEJAMMER"."EMPLOYEE_ADDRESS" (
ID bigint not null primary key generated by default as IDENTITY,
"STREETNUMBER" INTEGER CS_INT,
"STREET" NVARCHAR(200),
"LOCALITY" NVARCHAR(200),
"STATE" NVARCHAR(200),
"COUNTRY" NVARCHAR(200)) UNLOAD PRIORITY 5 AUTO MERGE ;
insert into "CODEJAMMER"."EMPLOYEE_ADDRESS" (STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(555,'Madison Ave','New York','NY','America');
insert into "CODEJAMMER"."EMPLOYEE_ADDRESS" (STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(95,'Morten Street','New York','NY','USA');
SELECT * FROM "CODEJAMMER"."EMPLOYEE_ADDRESS";
Now lets setup the NIFI workflow. Final result will look like this: Nifi Setup : This is a simple NIFI setup, the queryDatabase table processor is only available as part of default processors from version 0.6 of Nifi. Drop an instance of the QueryDatabaseTable processor on your canvas. Right click to configure and fill out the Required fields , plus you click on the error to setup the DB connection pool, see settings below: The limitation with this processor as it is not a true CDC and relies on one column. If the data is reloaded into the column with older data the data will not be replicated into HDFS or any other destination. This processor does not rely on Transactional logs or redo logs . Next configure the putHDFS processor configure the Hadoop Core-site.xml and hdfs-site.xml and destination HDFS directory Now lets start all the processors. Validate that you got data by checking provenance in your processor. You can also check what is the max id column state. The last auto increment ID will be displayed . Right click on QueryDatabaseTable processor and select View State: Testing CDC
Now insert a new record in HANA and validate that the record is in JSON format in HDFS insert into "CODEJAMMER"."EMPLOYEE_ADDRESS" (STREETNUMBER,STREET,LOCALITY,STATE,COUNTRY) values(2395,'Broadway Street','New York','NY','USA');
Looking into HDFS we see the new JSON record:
... View more
Labels:
12-08-2016
06:30 PM
Nice Job! I did a similar article with a zeppelin + livy + AD/LDAP in case you want to check out livy steps: https://community.hortonworks.com/articles/65449/ow-to-setup-a-multi-user-active-directory-backed-z.html
... View more
11-22-2016
03:49 PM
@Sebastian can you take a screenshot or copy and paste your interpreter settings pls?
... View more
11-15-2016
04:49 PM
6 Kudos
Pre-Requisites This is a continuation of of "How to setup a multi user (Active Directory backed) zeppelin integrated with ldap and using Livy Rest server" You should have a running HDP cluster, Zeppelin with Livy, Ranger. Tested on HDP 2.5. I will use 3 user accounts for demoing security: hadoopadmin, sales1, hr1. You can substitute accordingly to your environment. These users are synced from an LDAP/AD in my use case Spark and HDFS security We will Configure Ranger policies to:
Protect /sales HDFS dir - so only sales group has access to it Protect sales hive table - so only sales group has access to it Create /sales dir in HDFS as hadoopadmin Create /sales dir in HDFS as hadoopadmin sudo -u hadoopadmin hadoop fs -mkdir /sales
sudo -u hadoopadmin hadoop fs -chown sales:hadoop /sales
Now login as sales1 and attempt to access it before adding any Ranger HDFS policy sudo su - sales1
hdfs dfs -ls /sales
It fails with authorization error: Permission denied: user=sales1, access=READ_EXECUTE, inode="/sales":hadoopadmin:hdfs:d--------- Lets create a policy in ranger that will allow the user now access /sales directory Login into Ranger UI e.g. at http://RANGER_HOST_PUBLIC_IP:6080/index.html as admin/admin In Ranger, click on 'Audit' to open the Audits page and filter by below. Service Type: HDFS User: sales1 Notice that Ranger captured the access attempt and since there is currently no policy to allow the access, it was "Denied" Create an HDFS Policy in Ranger, follow below steps: On the 'Access Manager' tab click HDFS > (clustername)_hadoop Click 'Add New Policy' button to create a new one allowing sales group users access to /sales dir: Policy Name: sales dir Resource Path: /sales Group: sales Permissions : Execute Read Write Add Wait 30s for policy to take effect Now try accessing the dir again as sales1 and now there is no error seen hdfs dfs -ls /sales In Ranger, click on 'Audit' to open the Audits page and filter by below: Service Type: HDFS User: sales1 Notice that Ranger captured the access attempt and since this time there is a policy to allow the access, it was Allowed Now lets copy test data for sales user - run in command line as 'sales1' user <code>wget https://raw.githubusercontent.com/roberthryniewicz/datasets/master/airline-dataset/flights/flights.csv -O /tmp/flights.csv
# remove existing copies of dataset from HDFS
hadoop fs -rm -r -f /sales/airflightsdelays
# create directory on HDFS
hadoop fs -mkdir /sales/airflightsdelays
# put data into HDFS
hadoop fs -put /tmp/flights.csv /sales/airflightsdelays/
hadoop fs -cat /sales/airflightsdelays/flights.csv | head
You should see an output similar to : <code>[sales1@az1secure0 ~]$ wget https://raw.githubusercontent.com/roberthryniewicz/datasets/master/airline-dataset/flights/flights.csv -O /tmp/flights.csv
--2016-11-15 16:28:24-- https://raw.githubusercontent.com/roberthryniewicz/datasets/master/airline-dataset/flights/flights.csv
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.52.133
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.52.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 9719582 (9.3M) [text/plain]
Saving to: ‘/tmp/flights.csv’
100%[=========================================================================================>] 9,719,582 8.44MB/s in 1.1s
2016-11-15 16:28:26 (8.44 MB/s) - ‘/tmp/flights.csv’ saved [9719582/9719582]
[sales1@az1secure0 ~]$ # remove existing copies of dataset from HDFS
[sales1@az1secure0 ~]$ hadoop fs -rm -r -f /sales/airflightsdelays
16/11/15 16:28:28 INFO fs.TrashPolicyDefault: Moved: 'hdfs://az1secure0.field.hortonworks.com:8020/sales/airflightsdelays' to trash at: hdfs://az1secure0.field.hortonworks.com:8020/user/sales1/.Trash/Current/sales/airflightsdelays
[sales1@az1secure0 ~]$
[sales1@az1secure0 ~]$ # create directory on HDFS
[sales1@az1secure0 ~]$ hadoop fs -mkdir /sales/airflightsdelays
[sales1@az1secure0 ~]$
[sales1@az1secure0 ~]$ # put data into HDFS
[sales1@az1secure0 ~]$ hadoop fs -put /tmp/flights.csv /sales/airflightsdelays/
[sales1@az1secure0 ~]$
[sales1@az1secure0 ~]$ hadoop fs -cat /sales/airflightsdelays/flights.csv | head
Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime,CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay,WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay
2008,1,3,4,2003,1955,2211,2225,WN,335,N712SW,128,150,116,-14,8,IAD,TPA,810,4,8,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,754,735,1002,1000,WN,3231,N772SW,128,145,113,2,19,IAD,TPA,810,5,10,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,628,620,804,750,WN,448,N428WN,96,90,76,14,8,IND,BWI,515,3,17,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,926,930,1054,1100,WN,1746,N612SW,88,90,78,-6,-4,IND,BWI,515,3,7,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,1829,1755,1959,1925,WN,3920,N464WN,90,90,77,34,34,IND,BWI,515,3,10,0,,0,2,0,0,0,32
2008,1,3,4,1940,1915,2121,2110,WN,378,N726SW,101,115,87,11,25,IND,JAX,688,4,10,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,1937,1830,2037,1940,WN,509,N763SW,240,250,230,57,67,IND,LAS,1591,3,7,0,,0,10,0,0,0,47
2008,1,3,4,1039,1040,1132,1150,WN,535,N428WN,233,250,219,-18,-1,IND,LAS,1591,7,7,0,,0,NA,NA,NA,NA,NA
2008,1,3,4,617,615,652,650,WN,11,N689SW,95,95,70,2,2,IND,MCI,451,6,19,0,,0,NA,NA,NA,NA,NA
cat: Unable to write to output stream.
Now login as sales1 user in Zeppelin. Make sure livy is configured. <code>%livy.spark
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").load("/sales/airflightsdelays/") // Read all flights
df.printSchema
// Show a subset of columns with "select"
df.select("UniqueCarrier", "FlightNum", "DepDelay", "ArrDelay", "Distance").show
Your output should look like this: <code>df: org.apache.spark.sql.DataFrame = [Year: int, Month: int, DayofMonth: int, DayOfWeek: int, DepTime: string, CRSDepTime: int, ArrTime: string, CRSArrTime: int, UniqueCarrier: string, FlightNum: int, TailNum: string, ActualElapsedTime: string, CRSElapsedTime: int, AirTime: string, ArrDelay: string, DepDelay: string, Origin: string, Dest: string, Distance: int, TaxiIn: string, TaxiOut: string, Cancelled: int, CancellationCode: string, Diverted: int, CarrierDelay: string, WeatherDelay: string, NASDelay: string, SecurityDelay: string, LateAircraftDelay: string]
+-------------+---------+--------+--------+--------+
|UniqueCarrier|FlightNum|DepDelay|ArrDelay|Distance|
+-------------+---------+--------+--------+--------+
| WN| 335| 8| -14| 810|
| WN| 3231| 19| 2| 810|
| WN| 448| 8| 14| 515|
| WN| 1746| -4| -6| 515|
....
Now open a new browser for another user session hr1. Create a new notebook as hr userr and re-run similar steps <code>%livy.spark
val df = sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("inferSchema", "true").load("/sales/airflightsdelays/") // Read all flights
df.printSchema
// Show a subset of columns with "select"
df.select("UniqueCarrier", "FlightNum", "DepDelay", "ArrDelay", "Distance").show
Your output should look like this: <code>org.apache.hadoop.security.AccessControlException: Permission denied: user=hr2, access=EXECUTE, inode="/sales/airflightsdelays":hadoopadmin:hdfs:d---------
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:319)
Lets login to YARN Resource Manager UI to confirm that the zeppelin sessions ran as the end user sales1 and hr2 : Stay tuned for part 2 where we will show how to Protect sales hive table - so only sales group has access to it
... View more
Labels:
11-15-2016
04:01 PM
You must use Livy integration for the user tokens to be passed.
... View more